您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者22条结果 成果回收站

上传时间

2020年11月04日

【期刊论文】Global Clock, Physical Time Order and Pending Period Analysis in Multiprocessor Systems

arXiv,2009,():

2009年07月12日

摘要

In multiprocessor systems, various problems are treated with Lamport's logical clock and the resultant logical time orders between operations. However, one often needs to face the high complexities caused by the lack of logical time order information in practice. In this paper, we utilize the \emph{global clock} to infuse the so-called \emph{pending period} to each operation in a multiprocessor system, where the pending period is a time interval that contains the performed time of the operation. Further, we define the \emph{physical time order} for any two operations with disjoint pending periods. The physical time order is obeyed by any real execution in multiprocessor systems due to that it is part of the truly happened operation orders restricted by global clock, and it is then proven to be independent and consistent with traditional logical time orders. The above novel yet fundamental concepts enables new effective approaches for analyzing multiprocessor systems, which are named \emph{pending period analysis} as a whole. As a consequence of pending period analysis, many important problems of multiprocessor systems can be tackled effectively. As a significant application example, complete memory consistency verification, which was known as an NP-hard problem, can be solved with the complexity of O(n2) (where n is the number of operations). Moreover, the two event ordering problems, which were proven to be Co-NP-Hard and NP-hard respectively, can both be solved with the time complexity of O(n) if restricted by pending period information.

0

上传时间

2020年11月04日

【期刊论文】Godson-3: A Scalable Multicore RISC Processor with x86 Emulation

IEEE Micro,2009,29(2):17 - 29

2009年04月07日

摘要

The Godson-3 microprocessor aims at high-throughput server applications, high-performance scientific computing, and high-end embedded applications. It offers a scalable network on chip, hardware support for x86 emulation, and a reconfigurable architecture. The four-core Godson-3 chip is fabricated with 65-nm CMOS technology. Eight- and 16-core Godson-3 chips are in development.

0

合作学者

  • 暂无合作作者