您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者10条结果 成果回收站

上传时间

2021年03月19日

【期刊论文】Influence of manufacturing defects on modal properties of composite pyramidal truss-like core sandwich cylindrical panels

Composites Science and Technology,2017,147():89-99

2017年07月28日

摘要

Defects can easily appear in composite lattice truss core sandwich structures during the complex preparation process, which may significantly affect the structural response and decrease the load-carrying capability. The purpose of this paper is to investigate the manufacturing defect sensitivity of modal vibration responses of carbon fiber composite pyramidal truss-like core sandwich cylindrical panels by modal experiments and finite element analysis. Defects including debonding between face sheets and truss cores (DFT), truss missing (DTM), face sheet wrinkling (DFW) and gap reinforcing (DGR) are introduced into the present intact specimen artificially and modal testing is conducted to study their dynamic behavior under free-free boundary conditions. Finite element models consistent with the experiments are then developed to further study the effect of defect extents, locations and forms on the modal parameters of the present sandwich cylindrical panels. Results indicate that the degree of sensitivity of natural frequencies of the present sandwich cylindrical panels mainly depends on the vibration modes, defect extents, locations and forms. In addition, damping loss factors are much more sensitive than their corresponding frequencies. Some conclusions and essential mechanisms are summarized, which is helpful to vibration-based non-destructive evaluation (NDE) of such kind of composite lattice sandwich structures.

A., Carbon fibres B., Defects C., Finite element analysis (, FEA), D., Non-destructive testing

0

上传时间

2021年03月19日

【期刊论文】A hybrid joining insert for sandwich panels with pyramidal lattice truss cores

Composite Structures,2020,241():112123

2020年06月01日

摘要

Sophisticated and efficient technique of sandwich attachment for composite sandwich structure assembly is imperatively required by industries. Certain types of joining inserts are widely used to carry the localized loads, but little is known regarding to the joining method for composite lattice truss core sandwich structures. In this study, a novel hybrid insert fastener, which comprises a plurality of carbon-fiber-reinforced grid cells and a metallic part, is developed for pyramidal truss core sandwich structures. Finite element models are developed to predict the failure modes and the load capabilities of different insert locations. Static pull-out and shear experiments are carried out, and the failure behaviors for each load case are discussed. The results show that the shear performance is significantly improved, and the insert position greatly affects the static pull-out behavior. An optimization of the hybrid joining insert to enhance the pull-out characteristic is addressed and verified by the finite element analysis.

0

上传时间

2021年03月19日

【期刊论文】Interlocking assembled 3D auxetic cellular structures

Materials & Design,2016,99():467-476

2016年06月05日

摘要

As promising metamaterials, 3D periodic auxetic cellular structures (PACSs) have attracted great interest. However, they usually consist of intricate geometries which make their fabrication a significant challenge. The present paper is focused on introducing the interlocking assembly concept into the fabrication of 3D PACSs. There are distinct advantages of the interlocking assembly method compared with the additive manufacturing methods mainly used before. Based on the interlocking assembly method, the dependences of mechanical properties mainly including the Poisson's ratio and the Young's modulus of the structure on the re-entrant angle were investigated through a combination of uniaxial compression experiments and numerical simulations, excellent qualitative and quantitative agreement was found. Using the experimentally verified numerical model, the effects of the strut thickness and the ratio of the vertical strut length to oblique strut length on the mechanical properties of the structure were investigated. Results show that the compression modulus of the structure will increase with the structure becomes more re-entrant, but there exists an extreme value for Poisson's ratio with the re-entrant angle around 45° which differs from former studies. With the thickening of the struts the compression modulus of the structure monotonously increases and the Poisson's ratio of the structure will gradually changes from negative to positive then gradually approaches to the Poisson's ratio of the parent material. The vertical strut length to oblique strut length ratio plays fewer roles on the mechanical properties compared with the re-entrant angle and the strut thickness.

Auxetic Cellular materials Mechanical properties Interlocking assembled method

0

上传时间

2021年03月19日

【期刊论文】Mechanical properties of 3D re-entrant auxetic cellular structures

International Journal of Mechanical Sciences,2017,131-132():396-407

2017年10月01日

摘要

In this work, an analytical model of a 3D re-entrant auxetic cellular structure has been established based on energy method. In the model the overlapping of the struts as well as axial extension or compression (mostly neglected in former studies) were taken into consideration to make the model applicable when the struts are relative stubby which is common in engineering designs. Analytical solutions for the modulus and Poisson's ratios of the cellular structure in all principal directions were deduced. To validate the analytical model in present study, numerical calculations using brick elements were performed on unit cell models with periodic boundary conditions, and comparisons of the present model with analytical formulae and experimental results available in former literatures were also conducted. The results show that when the struts are slender enough, the bending of the struts play decisive role on the deformation of the structure and other mechanisms can be ignored; while when the struts become relative stubby, all the mechanisms including bending, shearing and axial loading need to be considered; The often-ignored axial extension or compression term may even play decisive role on determining the lateral Poisson's ratio of the structure when the struts are relative stubby.

Auxetic structure Cellular solids Energy method

0

上传时间

2021年03月19日

【期刊论文】Fabrication and mechanical properties of CFRP composite three-dimensional double-arrow-head auxetic structures

Composites Science and Technology,2018,164():92-102

2018年08月18日

摘要

In recent years, 3D structures with negative Poisson's ratio (auxetic) have attracted great interest. Many polymer and metal 3D auxetic structures have been manufactured using additive manufacturing technology, however composite 3D auxetic structures are rarely reported. Auxetic structures are normally of low stiffness which causes limitations on the structural applications of them. The specific stiffness and strength of auxetic structures can be significantly improved by making them from high-performance fibre reinforced polymer (FRP) composites. Consequently, research of composite 3D auxetic structures made from FRP should be conducted. This paper presents the composite 3D double-arrow-head (DAH) auxetic structure made from carbon fibre reinforced polymer (CFRP) using an assembly method. Experimental, finite element and theoretical methods are adopted to study the mechanical properties of the composite 3D DAH auxetic structures. Results show that the Poisson's ratios and effective compression moduli of the composite 3D DAH auxetic structures vary depending on the compression strain amplitude, and the structures become more auxetic and stiffer with the increase of the compression strain. The specific stiffness of the composite 3D DAH structure is much higher than that of the metal structure. In addition, the dependences of the structure's Poisson's ratio and effective compression modulus on the geometry parameters have also been given. Making auxetic structures from high-performance FRP composites can significantly improve their mechanical properties which will enable them to have a much wider variety of applications.

A., Carbon fibres B., Mechanical properties C., Finite element analysis (, FEA), D., Mechanical testing E., Auxetic

0

合作学者

  • 暂无合作作者