您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者14条结果 成果回收站

上传时间

2005年07月01日

【期刊论文】Simulating Interactive Effects of Symbiotic Nitrogen Fixation, Carbon Dioxide Elevation, and Climatic Change on Legume Growth

高琼, Mei Yu, Q. Gao, * and M. J. Shaffer

Published in J. Environ. Qual. 31: 634~641 (2002),-0001,():

-1年11月30日

摘要

The underlying mechanisms of interaction between the symbiotic nitrogen-fixation process and main physiological processes, such as assimilation, nutrient allocation, and structural growth, as well as effects of nitrogen fixation on plant responses to global change, are important and still open to more investigation. Appropriate models have not been adequately developed. A dynamic ecophysiological model was developed in this study for a legume plant [Glycine max (L.) Merr.] growing in northern China. The model synthesized symbiotic nitrogen fixation and the main physiological processes under variable atmospheric CO2 concentration and climatic conditions, and emphasized the interactive effects of these processes on seasonal biomass dynamics of the plant. Experimental measurements of eco-physiological quantities obtained in a CO2 enrichment experiment on soybean plants, were used to parameterize and validate the model. The results indicated that the model simulated the experiments with reasonable accuracy. The R2 values between simulations and observa-tions are 0.94, 0.95, and 0.86 for total biomass, green biomass, and nodule biomass, respectively. The simulations for various combinations of atmospheric CO2 concentration, precipitation, and temperature, with or without nitrogen fixation, showed that increasing atmospheric CO2 concentration, precipitation, and efficiency of nitrogen fixation all have positive effects on biomass accumulation. On the other hand, an increased temperature induced lower rates of biomass accumulation under semi-arid conditions. In general, factors with positive effects on plant growth tended to promote each other in the simulation range, except the relationship between CO2 concentration and climatic factors. Because of the enhanced water use efficiency with a higher CO2 concentration, more significant effects of CO2 concentration were associated with a worse (dryer and warmer in this study) climate.

上传时间

2005年07月01日

上传时间

2007年12月20日

上传时间

2007年06月15日

上传时间

2005年07月01日

合作学者

  • 高琼 邀请

    北京师范大学,北京

    尚未开通主页