您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者10条结果 成果回收站

上传时间

2004年12月28日

【期刊论文】Notch1 Signaling Inhibits Growth of Human Hepatocellular Carcinoma through Induction of Cell Cycle Arrest and Apoptosis

曹雪涛, Runzi Qi, , Huazhang An, Yizhi Yu, Minghui Zhang, Shuxun Liu, Hongmei Xu, Zhenghong Guo, Tao Cheng, and Xuetao Cao

CANCER RESEARCH 63, 8323-8329, December 1, 2003,-0001,():

-1年11月30日

摘要

Notch signaling plays a critical role in maintaining the balance between cell proliferation, differentiation, and apoptosis; hence, perturbed Notch signaling may contribute to tumorigenesis. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in Africa and Asia. The mechanisms that orchestrate the multiple oncogenic insults required for initiation and progression of HCC are not clear. We constitutively overexpressed active Notch1 in human HCC to explore the effects of Notch1 signaling on HCC cell growth and to investigate the underlying molecular mechanisms. We show here that overexpression of Notch1 was able to inhibit the growth of HCC cells in vitro and in vivo. Biochemical analysis revealed the involvement of cell cycle regulated proteins in Notch1-mediated G0/G1 arrest of HCC cells. Compared with green fluorescent protein (GFP) control, transient transfection of Notch1 ICN decreased expression of cyclin A (3.5-fold), cyclin D1 (2-fold), cyclin E (4.5-fold), CDK2 (2.8-fold), and the phosphorylated form of retinoblastoma protein (3-fold). Up-regulation of p21waf/cip1 protein expression was observed in SMMC7721-ICN cells stably expressing active Notch1 but not in SMMC7721-GFP cells, which only express GFP. Furthermore, a 12-fold increase in p53 expression and an increase (4.8-fold) in Jun-NH2-terminal kinase activation were induced in SMMC7721-ICN cells compared with SMMC7721-GFP cells. In contrast, expression of the antiapoptotic Bcl-2 protein could not be detected in SMMC7721-ICN cells. These findings suggest that Notch1 signaling may participate in the development of HCC cells, affecting multiple pathways that control both cell proliferation and apoptosis.

上传时间

2004年12月28日

【期刊论文】Fas ligation induces IL-1β-dependent maturation and IL-1β-independent survival of dendritic cells: different roles of ERK and NF-κB signaling pathways

曹雪涛, Zhenhong Guo, Minghui Zhang, Huazhang An, Weilin Chen, Shuxun Liu, Jun Guo, Yizhi Yu, and Xuetao Cao

Blood. 2003; 102: 4441-4447,-0001,():

-1年11月30日

摘要

The mechanisms that underpin the intriguing capacity of Fas ligation on dendritic cells (DCs) to induce maturation and activation, rather than apoptosis, remain unclear. In the present study we confirm that Fas signaling induces both phenotypic and functional maturation of murine DCs, and we demonstrate that phenotypic maturation is associated with phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, activation of caspase-1, and secretion of interleukin-β(IL-1β). Specific inhibition of ERK1/2 diminished Fas ligation-induced caspase-1 activation, IL-1β secretion, and ensuing up-regulation of developmental markers, whereas treatment with neutralizing anti-IL-1β antibody abrogated phenotypic and functional maturation, indicating that IL-1βmediates Fas ligation-induced DC maturation in an autocrine manner. NF-κB activation was responsible for maintaining DC viability after Fas ligation. Inhibiting NF-κB did not affect either IL-1β secretion or phenotypic maturation but rather sensitized DCs to Fas-mediated apoptosis. In conclusion, positive signals originating from Fas are transduced through at least 2 different intracellular pathways in DCs, promoting not only survival but also an increase in maturation that correlates with increased antigen-presentation capability.

上传时间

2004年12月28日

【期刊论文】Cyclosporin A impairs dendritic cell migration by regulating chemokine receptor expression and inhibiting cyclooxygenase-2 expression

曹雪涛, Taoyong Chen, Jun Guo, Mingjin Yang, Chaofeng Han, Minghui Zhang, Wei Chen, Qiuyan Liu, Jianli Wang, and Xuetao Cao

Blood. 2004; 103: 413-421,-0001,():

-1年11月30日

摘要

Migration of dendritic cells (DCs) into tissues and secondary lymphoid organs plays a crucial role in the initiation of innate and adaptive immunity. In this article, we show that cyclosporin A (CsA) impairs the migration of DCs both in vitro and in vivo. Exposure of DCs to clinical concentrations of CsA neither induces apoptosis nor alters development but does impair cytokine secretion, chemokine receptor expression, and migration. In vitro, CsA impairs the migration of mouse bone marrow-derived DCs toward macrophage inflammatory protein-3β (MIP-3β) and induces them to retain responsiveness to MIP-1α after lipopolysaccharide (LPS)-stimulated DC maturation, while in vivo administration of CsA inhibits the migration of DCs out of skin and into the secondary lymphoid organs. CsA impairs chemokine receptor and cyclooxygenase-2 (COX-2) expression normally triggered in LPS-stimulated DCs; administration of exogenous prostaglandin E2 (PGE2) reverses the effects of CsA on chemokine receptor expression and DC migration. Inhibition of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathway signaling by CsA may be responsible for the CsA-mediated effects on the regulation of chemokine receptor and cyclooxygenase-2 (COX-2) expression. Impairment of DC migration due to inhibition of PGE2 production and regulation of chemokine receptor expression may contribute, in part, to CsAmediated immunosuppression.

上传时间

2004年12月28日

【期刊论文】Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant

曹雪涛, Tao Wan, Xiangyang Zhou, Guoyou Chen, Huazhang An, Taoyong Chen, Weiping Zhang, Shuxun Liu, Yingming Jiang, Feng Yang, Yanfeng Wu, and Xuetao Cao

Blood. 2004; 103: 1747-1754,-0001,():

-1年11月30日

摘要

Heat shock proteins (HSPs) are reported to act as effective adjuvants to elicit antitumor and anti-infection immunity. Here, we report that Hsp70-like protein 1 (Hsp70L1), a novel HSP derived from human dendritic cells (DCs), has potent adjuvant effects that polarize responses toward Th1. With a calculated molecular weight of 54.8kDa, Hsp70L1 is smaller in size than Hsp70 but resembles it both structurally and functionally. Hsp70L1 shares common receptors on DCs with Hsp70 and can interact with DCs, promoting DC maturation and stimulating secretion of the proinflammatory cytokines interleukin 12p70 (IL-12p70), IL-1β, tumor necrosis factor-α (TNF-α), and the chemokines IP-10, macrophage inflammatory protein-1α (MIP-1α), MIP-1β, and normal T cell expressed and secreted (RANTES). The induction of interferon-γ-inducible protein 10 (IP-10) secretion by Hsp70L1 is not shared by Hsp70, and other functional differences include more potent stimulation of DC IL-12p70, CC-chemokine, and CCR7 and CXCR4 expression by Hsp70L1. Immunization of mice with the hybrid peptide Hsp70L1-ovalbumin (OVA) 257-264 induces an OVA257-264specific Th1 response and cytotoxic T lymphocyte (CTL) that results in significant inhibition of E.G7-OVA tumor growth. The ability of Hsp70L1 to activate DCs indicates its potential as a novel adjuvant for use with peptide immunizations; the Hsp70L1 antigen peptide hybrid may serve as a more effective vaccine for the control of cancer and infectious diseases.

上传时间

2004年12月28日

【期刊论文】Identification of an HLA-A*0201-restricted CD8+T-cell epitope SSp-1 of SARS-CoV spike protein

曹雪涛, Baomei Wang, Huabiao Chen, Xiaodong Jiang, Minghui Zhang, Tao Wan, Nan Li, Xiangyang Zhou, Yanfeng Wu, Feng Yang, Yizhi Yu, Xiaoning Wang, Ruifu Yang, and Xuetao Cao

Blood. 2004; 104: 200-206,-0001,():

-1年11月30日

摘要

Anovel coronavirus, severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV), has been identified as the causal agent of SARS. Spike (S) protein is a major structural glycoprotein of the SARS virus and a potential target for SARS-specific cell-mediated immune responses. A panel of S protein-derived peptides was tested for their binding affinity to HLA-A*0201 molecules. Peptides with high affinity for HLA-A*0201 were then assessed for their capacity to elicit specific immune responses mediated by cytotoxic T lymphocytes (CTLs) both in vivo, in HLA-A2.1/Kb transgenic mice, and in vitro, from peripheral blood lymphocytes (PBLs) sourced from healthy HLAA2.1+donors. SARS-CoV protein-derived peptide-1 (SSp-1 RLNEVAKNL), induced peptide-specific CTLs both in vivo (transgenic mice) and in vitro (human PBLs), which specifically released interferon-γ (IFN-γ) upon stimulation with SSp-1-pulsed autologous dendritic cells (DCs) or T2 cells. SSp-1-specific CTLs also lysed major histocompatibility complex (MHC)-matched tumor cell lines engineered to express S proteins. HLA-A*0201-SSp-1 tetramer staining revealed the presence of significant populations of SSp-1-specific CTLs in SSp-1-induced CD8+T cells. We propose that the newly identified epitope SSp-1 will help in the characterization of virus control mechanisms and immunopathology in SARS-CoV infection, and may be relevant to the development of immunotherapeutic approaches for SARS.

合作学者

  • 曹雪涛 邀请

    中国人民解放军第二军医大学,上海

    尚未开通主页