您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者1条结果 成果回收站

上传时间

2006年08月22日

【期刊论文】Pituitary ontogeny of the Snell dwarf mouse reveals Pit-1-independent and Pit-1-dependent origins of the thyrotrope

林圣彩, Sheng-Cai Lin, *, Sen Li, , Daniel W. Drolet, and Michael G. Rosenfeld, †

Development 120, 515-522(1994),-0001,():

-1年11月30日

摘要

The anterior pituitary provides a model to study the molecular mechanisms responsible for emergence of distinct cell types within an organ. Dwarf mice (Snell) that express a mutant form of the tissue-specific POU-domain transcription factor Pit-1 fail to generate three cell types, including the thyrotrope (S. Li, E. B. Crenshaw, E. J. Rawson, D. S. Simmons, L. Swanson and M. G. Rosenfeld (1990), Nature 347, 528-533). Analyses of wild-type and Pit-1-defective mice, presented here, have revealed that thyrotropes unexpectedly arise from two independent cell populations. The first population is Pit-1-independent and appears on e12 in the rostral tip of the developing gland, but phenotypically disappears by the day of birth. The second is Pit-1-dependent and arises subsequently in the caudomedial portion of the developing gland (e15.5), following the initial expression of Pit-1 in this region. The failure of caudomedial thyrotrope cells to appear in the Snell dwarf, and the observation that Pit-1 can bind to and transactivate the TSHb promoter, apparently enhanced by its phosphorylation, suggests that Pit-1 is directly required for the appearance of this distinct population that serves as the precursors of the mature thyrotrope cell type. These data suggest that different molecular mechanisms, based on the actions of distinct transcription factors, can serve to independently generate a specific cell phenotype during mammalian organogenesis.

Pituitary, Pit-1, thyrotrope cell lineage, Snell dwarf mouse, mouse

合作学者