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A growing and pruning strategy-based resource allocation neural network for text categorization# 
CHEN Peng, SONG Wei**
(Jiangnan University, School of Internet of Things Engineering)
Abstract: In this paper, we propose a novel learning classifier which utilizes growing and pruning strategy-based resource allocation neural network (GPRAN) for text categorization. Firstly, in order to reduce the sensitivity corresponding to the input dataset, GPRAN uses an agglomerate hierarchical k-means method to effectively create the initial structure of hidden layer. Subsequently, the growing and pruning criteria are put forward to dynamically regulate the hidden layer centers. The least square method is used to further improve its ability for classification at last. Furthermore, in order to implement GPRAN to text categorization, we utilize a semantic similarity approach which reduces the input scales of neural network and reveals the latent semantics between text features. Experimental results reveal that the GPRAN algorithm enhances the predicted precision and decreases its computational complexity.

Key words: text categorization; resource allocation network; novelty criteria; least square method
0 Introduction[image: image2.wmf]
With the rapid development of internet technology, a large quantity of online documents and information are growing exponentially. The demand of rapidly and accurately finding out useful information from such a large dataset has become a challenge for modern information retrieval (IR) technologies. Text categorization (TC) is a crucial and well-proven instrument for organizing large volumes of textual information, and as a key technique in IR field, it has been extensively researched and witnessed rapid progress.

In recent years, an increasing number of approaches based on intelligent agent and machine learning have been applied to TC, including support vector machine [1], decision trees [2], K-nearest neighbor (KNN) [3], bayes model [4], neural network [5]. Although many methods have been proposed, the effectiveness of present automated text classifiers is still with fault and needs improvement. Since artificial neural network is still one of the most powerful tools for text categorization, and radial basis function (RBF) neural network without slow learning rate but a simple mechanism with robust global situation approaching property, which is a type of feed forward neural network. We employ it as a classifier. It’s known that the key to build a successful RBF neural network is to insure proper unit number in the hidden layer of the network [6]. 
More and more learning methods have proposed to modify hidden node to satisfy the demand of the suitable RBF neural network structure, the most remarkable approach is resource allocation neural network (RAN) learning method put forward by Platt [7]. RAN can dynamically regulate the number of the hidden layer units by judging the novelty criteria. However, the novelty criteria are sensitive to the initialized data, which easily cause the growth of the network training time, and the reduction of the employment effect. Moreover, the least mean-square (LMS) algorithm has been applied to RAN algorithm to update the learning parameters, which makes the network suffer from drawback of lower convergence rate [8]. Instead of LMS method, we use least squares algorithm to enhance the convergence rate. In order to improve the network criteria of novelty, different from common RAN, which only use one loop of training data, we adopt multiple loops to ensure the adequacy of hidden layer nodes. Besides, the algorithm dynamically removes the hidden layer centers based on the relative contribution. Such a method determines the structure of RAN by adding and pruning the hidden layer centers.
The rest of this paper is organized as follows. Section 1 introduces the basic concepts of the RAN algorithm and proposes the method of GPRAN as an efficient text classifier. Section 2 describes an effective method to generate the latent semantic feature. Experimental results are illustrated in Section 3. Conclusions are given in Section 4.
1 The GPRAN learning algorithm 
1.1 The RAN algorithm
RAN is a promising and sequential learning supervised algorithm based on RBF neural network. In the network, the input layer, the hidden layer and the output layer are 
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 is the offset item of output layer. The unit of the hidden layer uses Gaussian function, as the activation function, which is shown as
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Where 
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 are the center and the width of the 
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 hidden unit respectively. While the output of hidden layer node is linearly weighted for the output layer, the function is shown as 
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Where 
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 is the number of output layer nodes, and 
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 is the number of hidden layer nodes, 
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 is the input sample, 
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 is the connecting weight.
1.2 The GPRAN algorithm

1.2.1 Determination of initial centers
We adopt an agglomerate hierarchical k-means algorithm to initialize the structure of hidden layer. After this process, the generated cluster centers are defined as 
[image: image17.wmf])

,...,

,

,

(

3

2

1

k

c

c

c

c

C

=

, where 
[image: image18.wmf]k

 is the number of the clusters. The algorithm helps us obtain the hidden layer center 
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. Its process is shown as follows.
Step 1: The primitive data set is random divided into 
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 parts evenly, and is expressed as 
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. Clustering analysis is executed for every subset 
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 using k-means algorithm. In this way, we obtain a group of 
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 cluster centers after this step.

Step 2: As an agglomerate hierarchical clustering algorithm like the bottom-up strategy, it is used to cluster the newly generated [image: image26.wmf]'
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 clustering centers. In this algorithm, the two most similar clusters are merged to build a new cluster until only 
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 clusters are left. 
Step 3: Selecting the 
[image: image28.wmf]k

 cluster centers as the hidden layer centers of GPRAN learning algorithm. At the same time, we calculate the center width of the 
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 neuron by 

[image: image30.wmf]å

Î

-

-

=

i

c

x

i

T

i

i

i

c

x

c

x

N

)

(

)

(

1

s









     



 (3)

Where 
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 is the number of the samples contained in the cluster of center
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1.2.2 Growing and pruning criteria
RAN learning algorithm augments the number of hidden layer units through its novelty criteria. The criteria are shown as
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We will add the input pattern 
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 as a new hidden layer center if it satisfies both (4) and (5). Subsequently, the parameters are refined as below
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Where 
[image: image40.wmf]nearest

c

 is the nearest hidden layer center to 
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 is a correlation coefficient. On the contrary, 
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 will be assigned to its nearest center 
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Where 
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 is learning rate, 
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Where 
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 is the farthest center to 
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. Meanwhile, a gradient descent method is employed to adjust the offset 
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If there is no hidden layer neuron added to the network for consecutive 
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 epochs, our algorithm jumps to pruning. Pruning strategy is that if there is such a hidden layer neuron, its outputs and the connection weights are relatively little, we need to prune this hidden neuron. 
We calculate the output of every hidden layer neuron by (1). We normalize them by
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Where 
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 hidden layer neuron, and 
[image: image62.wmf])

(

max

i

x

F

 is the maximum of the hidden layer. 
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 is the predefined threshold. And we normalize the weights by
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Where 
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 is the maximum connection weight between the 
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 hidden layer neuron and output layer neurons. 
[image: image67.wmf]q

 is the predefined threshold. Thus, for 
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 hidden neuron, if more than 
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 input samples meet both formulas (14) and (15), we need remove it. 
1.2.3 Determination of weight
The GPRAN uses the least square method to update the weight of network. Assume that 
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 is the number of the training samples, 
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 is the eventual number of the hidden layer centers. Then we achieve the output matrix of hidden layer 
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 which is given by 
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Where 
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Where 
[image: image77.wmf]Y

 is the desired output of the network.
2 Semantic feature selection
2.1 Latent semantic feature space (LSFS)

Singular value decomposition (SVD) is a well-developed method for extracting dominant features of large data sets and for reducing the dimensionality of the data [9]. The training dataset can be firstly expressed as a term by document matrix 
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Where 
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 and 
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 are the matrices of term vectors and document vectors respectively, 
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 is the diagonal matrix of singular values. For the sake of reducing the dimensionality, we select the 
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Where 
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Where 
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 is the document by term matrix.
3 Experiment and result
In order to measure the effectiveness of our method, we use the standard Reuter-21578 corpus dataset. We choose 1500 documents for training and testing. We divide the documents into three parts, and two parts are used for learning while the rest one part is used for testing. In order to sufficiently reveal the performance of our GPRAN algorithm, we use a serious numbers of LSFS dimensions. In addition, we compare our GPRAN algorithm with RAN algorithm [7], BP algorithm [9], and RBF algorithm [10].
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Fig. 1  The F-measure of the four categorization algorithms with LSFS and VSM 
We can see from Fig. 1 that the F-measure of the four different algorithms using LSFS model gradually increases respectively. In the beginning, the F-measure of using VSM model is larger than that of using LSFS model, but in no time, the LSFS model becomes bigger before it reaches their extreme maximum points. In other words, no matter which neural network algorithm we use, if the proper number of semantic features is selected, the performance of categorization algorithms is better than that of using VSM. Moreover, we represent the best performance with the corresponding F-measure, dimension and computational time (C-time) of the four algorithms on the first dataset in Tab 1. 
Tab. 1 Best performance comparison with different methods
	Algorithm 
	Dimensions
	F-measure
	 C-time(s)

	GPRAN
	1000(VSM)
	0.9442
	307.1

	RAN
	1000(VSM)
	0.9099
	328.6

	BP
	1000(VSM)
	0.8911
	360.3

	RBF
	1000(VSM)
	0.8891
	265.4

	GPRAN
	400(LSFS)
	0.9648
	52.6

	RAN
	300(LSFS)
	0.9311
	56.4

	BP
	300(LSFS)
	0.9133
	89.2

	RBF
	300(LSFS)
	0.9093
	53.4


In Tab 1, the F-measure of our GPRAN is 0.9648, and its C-time is 52.6 seconds. We can see that GPRAN algorithm using LSFS not only takes the least amount of time, but also obtains the best result. In conclusion, the superiority of our algorithm enhances the performance of document categorization.
4 Conclusion
This paper proposes a growing and pruning strategy-based resource allocation neural network classifier for text classification. Our GPRAN network can dynamically add and decrease the number of hidden layer units by the novelty criteria and prune strategy respectively, which ensures the compact structure of GPRAN and reduces the complexity of neural network. Finally, GPRAN utilizes least square method to refine the learning ability and perfect the categorization accuracy. On the other hand, LSFS is used to deal with documents, which can greatly decrease the input feature of network. The experimental results show that the superiority of GPRAN enhances the performance of text categorization and LSFS improves its efficiency and accuracy.
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基于增加和剪枝策略的资源分配神经网络的文本分类
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摘要：本论文提出一种基于增加和剪枝策略的资源分配神经网络（GPRAN）的文本分类算法。首先，采用分层凝聚的K-means算法初始化网络的隐层结构，以降低初始数据的敏感性。然后，利用增加和剪枝策略来动态调整隐层中心。最后，采用最小二乘法进一步提高神经网络的分类能力。此外，为了实现GPRAN的文本分类，该算法采用语义相似度方法降低神经网络的输入规模并且揭示文本特征间的潜在相似性。实验结果表明GPRAN算法不仅提高了分类的精度，而且降低了计算的复杂度。
关键词：文本分类；资源分配网络；新颖性准则；最小二乘法
中图分类号：TP391
Foundations: National Natural Science Foundation of China (61103129); Natural Science Foundation of Jiangsu Province (SBK201122266); Specialized Research Fund for the Doctoral Program of Higher Education (20100093120004)
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