您当前所在位置: 首页 > 学者

李寒莹

  • 30浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 0下载

  • 0评论

  • 引用

期刊论文

High-Mobility Field-Effect Transistors from Large-Area Solution-Grown Aligned C60 Single Crystals

暂无

J. Am. Chem. Soc.,2012,134(5): 2760–2765 | 2012年01月06日 | https://doi.org/10.1021/ja210430b

URL:https://pubs.acs.org/doi/10.1021/ja210430b

摘要/描述

Field-effect transistors based on single crystals of organic semiconductors have the highest reported charge carrier mobility among organic materials, demonstrating great potential of organic semiconductors for electronic applications. However, single-crystal devices are difficult to fabricate. One of the biggest challenges is to prepare dense arrays of single crystals over large-area substrates with controlled alignment. Here, we describe a solution processing method to grow large arrays of aligned C60 single crystals. Our well-aligned C60 single-crystal needles and ribbons show electron mobility as high as 11 cm2V–1s–1 (average mobility: 5.2 ± 2.1 cm2V–1s–1 from needles; 3.0 ± 0.87 cm2V–1s–1 from ribbons). This observed mobility is ∼8-fold higher than the maximum reported mobility for solution-grown n-channel organic materials (1.5 cm2V–1s–1) and is ∼2-fold higher than the highest mobility of any n-channel organic material (∼6 cm2V–1s–1). Furthermore, our deposition method is scalable to a 100 mm wafer substrate, with around 50% of the wafer surface covered by aligned crystals. Hence, our method facilitates the fabrication of large amounts of high-quality semiconductor crystals for fundamental studies, and with substantial improvement on the surface coverage of crystals, this method might be suitable for large-area applications based on single crystals of organic semiconductors.

关键词:

学者未上传该成果的PDF文件,请等待学者更新

我要评论

全部评论 0

本学者其他成果

    同领域成果