您当前所在位置: 首页 > 学者

白凤武

  • 90浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 996下载

  • 0评论

  • 引用

期刊论文

Research review paper Ethanol fermentation technologies from sugar and starch feedstocks

白凤武F.W. Bai a b * W.A. Anderson a M. Moo-Young a

Biotechnology Advances 26(2008)89-105,-0001,():

URL:

摘要/描述

This article critically reviews some ethanol fermentation technologies from sugar and starch feedstocks, particularly those key aspects that have been neglected or misunderstood. Compared with Saccharomyces cerevisiae, the ethanol yield and productivity of Zymomonas mobilis are higher, because less biomass is produced and a higher metabolic rate of glucose is maintained through its special Entner–Doudoroff pathway. However, due to its specific substrate spectrum as well as the undesirability of its biomass to be used as animal feed, this species cannot readily replace S. cerevisiae in ethanol production. The steady state kinetic models developed for continuous ethanol fermentations show some discrepancies, making them unsuitable for predicting and optimizing the industrial processes. The dynamic behavior of the continuous ethanol fermentation under high gravity or very high gravity conditions has been neglected, which needs to be addressed in order to further increase the final ethanol concentration and save the energy consumption. Ethanol is a typical primary metabolite whose production is tightly coupled with the growth of yeast cells, indicating yeast must be produced as a co-product. Technically, the immobilization of yeast cells by supporting materials, particularly by gel entrapments, is not desirable for ethanol production, because not only is the growth of the yeast cells restrained, but also the slowly growing yeast cells are difficult to be removed from the systems. Moreover, the additional cost from the consumption of the supporting materials, the potential contamination of some supporting materials to the quality of the co-product animal feed, and the difficulty in the microbial contamination control all make the immobilized yeast cells economically unacceptable. In contrast, the self-immobilization of yeast cells through their flocculation can effectively overcome these drawbacks.

【免责声明】以下全部内容由[白凤武]上传于[2010年11月11日 10时38分44秒],版权归原创者所有。本文仅代表作者本人观点,与本网站无关。本网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

我要评论

全部评论 0

本学者其他成果

    同领域成果