您当前所在位置: 首页 > 学者

彭天右

  • 72浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 208下载

  • 0评论

  • 引用

期刊论文

Ceramics in Nanotech Revolution

彭天右By Aman Arora *

ADVANCED ENGINEERINGMATERIALS 2004, 6, No.4, 241-244,-0001,():

URL:

摘要/描述

Researchers have been playing with advanced synthetic materials known as polymers and composites for several de-cades now. In the 1980s, a buzz word for materials scientists was "intelligent" or "smart" materials. In the mid-1990s the new buzzing became the creation nanostructured materials.[1] Nanometer is one billionth part of a meter. Literally "nano" represents 0.000000001 or 10 9. Defined broadly, the term "nanostructured" is used to describe materials characterized by structural features of less than 100nm in average size. The average size of an atom is of the order of 1 to 2 A in radius. 1 nanometer comprises 10 A, and hence in one nanometer, there may be 3-5 atoms, depending on the atomic radii. Man-ufactured products are made from atoms and the properties of such products depend on their atomic structure. If the car-bon atoms in coal are rearranged, diamonds can be made. Seashells, as we all know, are extraordinary tough and this crack and shatter resistant property are attributed by an ex-quisite nanostructure.[2] Nanotech is the most significant emerging materials technology for the next century. Research in nanostructured materials is motivated by the belief that ability to control the nanostructure of these materials can re-sult in enhanced properties at the macroscale viz. increased hardness, ductility, catalytic enhancement, selective absorp-tion, higher efficiency optical or electrical behavior. Experi-ments in the field of nanostructured materials have produced very significant and interesting results. The science of ceramic nanoparticles is no exception with much success in areas in-cluding synthesis, surface science, texturology, catalysis etc.[3] Chemistry of Nanoparticles Within the intermediate region of 2-10nm, neither quan-tum chemistry nor classical laws of physics hold. For example--in spherical nanoparticles with a size of 3nm, 50% of the atoms or ions are on the surface, allowing the possibility of manipulation of bulk properties by surface effects.[3] As the particles become smaller in size they may take on different morphologies that may alter surface chemistry and adsorp-tion properties in addition to increasing the surface area. These nanoparticles also possess a much greater number of defect sites per unit surface area, which are believed to be responsible for the observed chemistry. As the size of a parti-cle decreases, the percentage of atoms residing on the surface increases and of course these surface atoms are expected to be more reactive than their bulk counterparts as a result of coordinative unsaturation. Because of this and because of the fact that surface-to-volume ratio is large, it is not unusual to see unique chemical, physical or adsorptive properties and characteristics for nanoparticles.

关键词:

【免责声明】以下全部内容由[彭天右]上传于[2006年08月31日 23时49分12秒],版权归原创者所有。本文仅代表作者本人观点,与本网站无关。本网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

我要评论

全部评论 0

本学者其他成果

    同领域成果