您当前所在位置: 首页 > 学者

袁力行

  • 51浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 94下载

  • 0评论

  • 引用

期刊论文

Nitrogen-Dependent Posttranscriptional Regulation of the Ammonium Transporter AtAMT1;11[W][OA]

袁力行Lixing Yuan Dominique Loque´ Fanghua Ye Wolf B. Frommer and Nicolaus von Wiren*

Plant Physiology, February 2007, Vol. 143, pp. 732-744,-0001,():

URL:

摘要/描述

Ammonium transporter (AMT) proteins of the AMT family mediate the transport of ammonium across plasma membranes. To investigate whether AMTs are regulated at the posttranscriptional level, a gene construct consisting of the cauliflower mosaic virus 35S promoter driving the Arabidopsis (Arabidopsis thaliana) AMT1;1 gene was introduced into tobacco (Nicotiana tabacum). Ectopic expression of AtAMT1;1 in transgenic tobacco lines led to high transcript levels and protein levels at the plasma membrane and translated into an approximately 30% increase in root uptake capacity for 15N-labeled ammonium in hydroponically grown transgenic plants. When ammonium was supplied as the major nitrogen (N) form but at limiting amounts to soil-grown plants, transgenic lines overexpressing AtAMT1;1 did not show enhanced growth or N acquisition relative to wild-type plants. Surprisingly, steady-state transcript levels of AtAMT1;1 accumulated to higher levels in N-deficient roots and shoots of transgenic tobacco plants in spite of expression being controlled by the constitutive 35S promoter. Moreover, steady-state transcript levels were decreased after addition of ammonium or nitrate in N-deficient roots, suggesting a role for N availability in regulating AtAMT1;1 transcript abundance. Nitrogen deficiency-dependent accumulation of AtAMT1;1 mRNA was also observed in 35S:AtAMT1;1-transformed Arabidopsis shoots but not in roots. Evidence for a regulatory role of the 3#-untranslated region of AtAMT1;1 alone in N-dependent transcript accumulation was not found. However, transcript levels of AtAMT1;3 did not accumulate in a N-dependent manner, even though the same T-DNA insertion line atamt1;1-1 was used for 35S:AtAMT1;3 expression. These results show that the accumulation of AtAMT1;1 transcripts is regulated in a N- and organ-dependent manner and suggest mRNA turnover as an additional mechanism for the regulation of AtAMT1;1 in response to the N nutritional status of plants.

关键词:

【免责声明】以下全部内容由[袁力行]上传于[2010年08月31日 15时18分02秒],版权归原创者所有。本文仅代表作者本人观点,与本网站无关。本网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

我要评论

全部评论 0

本学者其他成果

    同领域成果