您当前所在位置: 首页 > 学者

朱爱民

  • 70浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 67下载

  • 0评论

  • 引用

期刊论文

Methane conversion to C2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques

朱爱民Xiao-Song Li Ai-Min Zhu Kang-Jun Wang Yong Xu Zhi-Min Song

Catalysis Today 98 (2004) 617-624,-0001,():

URL:

摘要/描述

Methane conversion to C2 hydrocarbons and hydrogen has been investigated in a needle-to-plate reactor by pulsed streamer and pulsed spark discharges and in a wire-to-cylinder dielectric barrier discharge (DBD) reactor by pulsed DC DBD and AC DBD at atmospheric pressure and ambient temperature. In the former two electric discharge processes, acetylene is the dominating C2 products. Pulsed spark discharges gives the highest acetylene yield (54%) and H2 yield (51%) with 69% of methane conversion in a pure methane system and at 10 SCCM of flow rate and 12 Wof discharge power. In the two DBD processes, ethane is the major C2 products and pulsed DC DBD provides the highest ethane yield. Of the four electric discharge techniques, ethylene yield is less than 2%. Energy costs for methane conversion, acetylene or ethane (for DBD processes) formation, and H2 formation increase with methane conversion percentage, and were found to be: in pulsed spark discharges (methane conversion 18–69%), 14–25, 35–65 and 10–17 eV/molecule; in pulsed streamer discharges (methane conversion 19–41%), 17–21, 38–59, and 12–19 eV/molecule; in pulsed DBD (methane conversion 6–13%), 38–57, 137–227 and 47–75 eV/molecule; in AC DBD (methane conversion 5–8%), 116–175, 446–637, and 151–205 eV/molecule, respectively. The immersion of the γ-Al2O3 pellets in the pulsed streamer discharges, or in the pulsed DC DBD, or in the AC DBD has a positive effect on increasing methane conversion and C2 yield. © 2004 Elsevier B.V. All rights reserved.

【免责声明】以下全部内容由[朱爱民]上传于[2007年09月13日 14时54分46秒],版权归原创者所有。本文仅代表作者本人观点,与本网站无关。本网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

我要评论

全部评论 0

本学者其他成果

    同领域成果