您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者12条结果 成果回收站

上传时间

2020年11月04日

【期刊论文】Non-iterative approach for global mesh optimization

Computer-Aided Design,2007,39(9):772-782

2007年09月01日

摘要

This paper presents a global optimization operator for arbitrary meshes. The global optimization operator is composed of two main terms, one part is the global Laplacian operator of the mesh which keeps the fairness and another is the constraint condition which reserves the fidelity to the mesh. The global optimization operator is formulated as a quadratic optimization problem, which is easily solved by solving a sparse linear system. Our global mesh optimization approach can be effectively used in at least three applications: smoothing the noisy mesh, improving the simplified mesh, and geometric modeling with subdivision-connectivity. Many experimental results are presented to show the applicability and flexibility of the approach.

0

上传时间

2020年11月04日

【期刊论文】A Local/Global Approach to Mesh Parameterization

Computer Graphics Forum,2008,27(5):1495-1504

2008年12月29日

摘要

We present a novel approach to parameterize a mesh with disk topology to the plane in a shape‐preserving manner. Our key contribution is a local/global algorithm, which combines a local mapping of each 3D triangle to the plane, using transformations taken from a restricted set, with a global “stitch” operation of all triangles, involving a sparse linear system. The local transformations can be taken from a variety of families, e.g. similarities or rotations, generating different types of parameterizations. In the first case, the parameterization tries to force each 2D triangle to be an as‐similar‐as‐possible version of its 3D counterpart. This is shown to yield results identical to those of the LSCM algorithm. In the second case, the parameterization tries to force each 2D triangle to be an as‐rigid‐as‐possible version of its 3D counterpart. This approach preserves shape as much as possible. It is simple, effective, and fast, due to pre‐factoring of the linear system involved in the global phase. Experimental results show that our approach provides almost isometric parameterizations and obtains more shape‐preserving results than other state‐of‐the‐art approaches. We present also a more general “hybrid” parameterization model which provides a continuous spectrum of possibilities, controlled by a single parameter. The two cases described above lie at the two ends of the spectrum. We generalize our local/global algorithm to compute these parameterizations. The local phase may also be accelerated by parallelizing the independent computations per triangle.

0

上传时间

2020年11月04日

【期刊论文】Feature-aligned shape texturing

ACM Transactions on Graphics,2009,28(5):

2009年12月01日

摘要

The essence of a 3D shape can often be well captured by its salient feature curves. In this paper, we explore the use of salient curves in synthesizing intuitive, shape-revealing textures on surfaces. Our texture synthesis is guided by two principles: matching the direction of the texture patterns to those of the salient curves, and aligning the prominent feature lines in the texture to the salient curves exactly. We have observed that textures synthesized by these principles not only fit naturally to the surface geometry, but also visually reveal, even reinforce, the shape's essential characteristics. We call these feature-aligned shape texturing. Our technique is fully automatic, and introduces two novel technical components in vector-field-guided texture synthesis: an algorithm that orients the salient curves on a surface for constrained vector field generation, and a feature-to-feature texture optimization.

0

上传时间

2020年11月04日

【期刊论文】Fast approach for computing roots of polynomials using cubic clipping

Computer Aided Geometric Design,2009,26(5):547-559

2009年06月01日

摘要

This paper presents a new approach, called cubic clipping, for computing all the roots of a given polynomial within an interval. In every iterative computation step, two cubic polynomials are generated to enclose the graph of the polynomial within the interval of interest. A sequence of intervals is then obtained by intersecting the sequence of strips with the abscissa axis. The sequence of these intervals converges to the corresponding root with the convergence rate 4 for the single roots, 2 for the double roots and super-linear for the triple roots. Numerical examples show that cubic clipping has many expected advantages over Bézier clipping and quadratic clipping. We also extend our approach by enclosing the graph of the polynomial using two lower degree polynomials by degree reduction. The sequence of intervals converges to the corresponding root of multiplicity s with convergence rate .

Root finding, Polynomial, Quadratic clipping, Cubic clipping

0

上传时间

2020年11月04日

【期刊论文】A spectral characterization of the Delaunay triangulation

Computer Aided Geometric Design,2010,27(4):

2010年05月01日

摘要

The Delaunay triangulation of a planar point set is a fundamental construct in computational geometry. A simple algorithm to generate it is based on flips of diagonal edges in convex quads. We characterize the effect of a single edge flip in a triangulation on the geometric Laplacian of the triangulation, which leads to a simpler and shorter proof of a theorem of Rippa that the Dirichlet energy of any piecewise-linear scalar function on a triangulation obtains its minimum on the Delaunay triangulation. Using Rippa's theorem, we provide a spectral characterization of the Delaunay triangulation, namely that the spectrum of the geometric Laplacian is minimized on this triangulation. This spectral theorem then leads to a simpler proof of a theorem of Musin that the harmonic index also obtains its minimum on the Delaunay triangulation.

0

合作学者

  • 暂无合作作者