您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者18条结果 成果回收站

上传时间

2021年02月05日

【期刊论文】Interference management through CoMP in 3GPP LTE-advanced networks

IEEE Wireless Communications ,2013,20(1): 59 - 66

2013年03月07日

摘要

Intercell interference management has become a critical issue for future cellular mobile systems. Coordinated multipoint transmission/reception, or CoMP, is an effective way of managing intercell interference, and has been regarded as a key technology of LTE-Advanced. This article first provides an overview of downlink CoMP techniques specified in 3GPP LTE Rel-11, which mainly focuses on transmission schemes, channel state information reporting, interference measurement, and reference signal design. Then uplink CoMP is discussed in brief as most of the coordination gain can be achieved by implementation with little standardization support. Evaluation results are provided to show the efficiency of CoMP. The challenges as well as possible solutions for future CoMP standardization are also discussed.

0

上传时间

2021年02月05日

【期刊论文】Resource allocation in full-duplex communications for future wireless networks

IEEE Wireless Communications,2015,22(4): 88 - 96

2015年08月27日

摘要

The recent significant progress in realizing FD systems has opened up a promising avenue for improving quality of service and quality of experience in future wireless networks. There is an urgent need to address the diverse set of challenges regarding different aspects of FD network design, theory, and development. In addition to the self-interference cancellation signal processing algorithms, network protocols such as resource management are also essential in the practical design and implementation of FD wireless networks. This article aims to present the latest development and future directions of resource allocation in different full duplex systems by exploring the network resources in different domains, including power, space, frequency, and device dimensions. Four representative application scenarios are considered: FD MIMO networks, FD cooperative networks, FD OFDMA cellular networks, and FD heterogeneous networks. Resource management problems and novel algorithms in these systems are presented, and key open research directions are discussed.

0

上传时间

2021年02月05日

【期刊论文】Secondary users cooperation in cognitive radio networks: balancing sensing accuracy and efficiency

IEEE Wireless Communications,2012,19(2):30 - 37

2012年04月26日

摘要

Cooperative spectrum sensing is a promising technique in cognitive radio networks by exploiting multi-user diversity to mitigate channel fading. Cooperative sensing is traditionally employed to improve the sensing accuracy while the sensing efficiency has been largely ignored. However, both sensing accuracy and efficiency have very significant impacts on the overall system performance. In this article, we first identify the fundamental trade-off between sensing accuracy and efficiency in spectrum sensing in cognitive radio networks. Then, we present several different cooperation mechanisms, including sequential, full-parallel, semi-parallel, synchronous, and asynchronous cooperative sensing schemes. The proposed cooperation mechanisms and the sensing accuracy-efficiency trade-off in these schemes are elaborated and analyzed with respect to a new performance metric achievable throughput, which simultaneously considers both transmission gain and sensing overhead. Illustrative results indicate that parallel and asynchronous cooperation strategies are able to achieve much higher performance, compared to existing and traditional cooperative spectrum sensing in cognitive radio networks.

0

上传时间

2021年02月05日

【期刊论文】Cooperative MIMO Channel Modeling and Multi-Link Spatial Correlation Properties

IEEE Journal on Selected Areas in Communications,2012,30(2): 388 - 396

2012年01月23日

摘要

In this paper, a novel unified channel model framework is proposed for cooperative multiple-input multiple-output (MIMO) wireless channels. The proposed model framework is generic and adaptable to multiple cooperative MIMO scenarios by simply adjusting key model parameters. Based on the proposed model framework and using a typical cooperative MIMO communication environment as an example, we derive a novel geometry-based stochastic model (GBSM) applicable to multiple wireless propagation scenarios. The proposed GBSM is the first cooperative MIMO channel model that has the ability to investigate the impact of the local scattering density (LSD) on channel characteristics. From the derived GBSM, the corresponding multi-link spatial correlation functions are derived and numerically analyzed in detail.

0

上传时间

2021年02月05日

【期刊论文】Wideband Channel Modeling and Intercarrier Interference Cancellation for Vehicle-to-Vehicle Communication Systems

IEEE Journal on Selected Areas in Communications,2013,31(9): 434 - 448

2013年07月02日

摘要

In this paper, we propose a new regular-shaped geometry-based stochastic model (RS-GBSM) for non-isotropic scattering wideband multiple-input multiple-output vehicle-to-vehicle (V2V) Ricean fading channels. By correcting the unrealistic assumption widely used in current RS-GBSMs, the proposed model can more practically study the impact of the vehicular traffic density on channel statistics for different time delays. From the proposed model, we derive the Doppler power spectral density (PSD) and find that highly dynamic Doppler spectrum appears for V2V channels. Excellent agreement is achieved between the derived Doppler PSD and measured data, demonstrating the utility of the proposed model. To combat the intercarrier interference (ICI) caused by highly dynamic Doppler spectrum in real orthogonal frequency division multiplexing based V2V systems, this paper proposes a new type of ICI cancellation scheme, named as precoding based cancellation (PBC) scheme. The proposed scheme can be easily implemented into real V2V systems with the same ICI mitigation performance as the current best ICI cancellation scheme that has high complexity. To further improve the performance of the proposed PBC scheme, a new phase rotation aided (PRA) method, namely constant PRA (CPRA) method, is proposed. Compared with the existing PRA method, the CPRA method has better performance and much less implementation complexity. Therefore, the proposed PBC scheme with the CPRA method is the best ICI cancellation scheme for real V2V systems.

0

合作学者

  • 暂无合作作者