您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者37条结果 成果回收站

上传时间

2021年03月31日

【期刊论文】Mean-field forward and backward SDEs with jumps and associated nonlocal quasi-linear integral-PDEs

Stochastic Processes and their Applications,2018,128(9):3118-3180

2018年09月01日

摘要

In this paper we consider a mean-field backward stochastic differential equation (BSDE) driven by a Brownian motion and an independent Poisson random measure. Translating the splitting method introduced by Buckdahn et al. (2014) to BSDEs, the existence and the uniqueness of the solution (Yt,ξ,Zt,ξ,Ht,ξ), (Yt,x,Pξ,Zt,x,Pξ,Ht,x,Pξ) of the split equations are proved. The first and the second order derivatives of the process (Yt,x,Pξ,Zt,x,Pξ,Ht,x,Pξ) with respect to x, the derivative of the process (Yt,x,Pξ,Zt,x,Pξ,Ht,x,Pξ) with respect to the measure Pξ, and the derivative of the process (∂μYt,x,Pξ(y),∂μZt,x,Pξ(y),∂μHt,x,Pξ(y)) with respect to y are studied under appropriate regularity assumptions on the coefficients, respectively. These derivatives turn out to be bounded and continuous in L2. The proof of the continuity of the second order derivatives is particularly involved and requires subtle estimates. This regularity ensures that the value function V(t,x,Pξ)≔Ytt,x,Pξ is regular and allows to show with the help of a new Itô formula that it is the unique classical solution of the related nonlocal quasi-linear integral-partial differential equation (PDE) of mean-field type.

BSDEs with jump Mean-field BSDEs with jump Integral-PDE of mean-field type Itô’s formula Value function

0

上传时间

2021年03月30日

【期刊论文】Stochastic differential games with reflection and related obstacle problems for Isaacs equations

Acta Mathematicae Applicatae Sinica, English Series ,2011,27():647 (2

2011年09月09日

摘要

In this paper we first investigate zero-sum two-player stochastic differential games with reflection, with the help of theory of Reflected Backward Stochastic Differential Equations (RBSDEs). We will establish the dynamic programming principle for the upper and the lower value functions of this kind of stochastic differential games with reflection in a straightforward way. Then the upper and the lower value functions are proved to be the unique viscosity solutions to the associated upper and the lower Hamilton-Jacobi-Bellman-Isaacs equations with obstacles, respectively. The method differs significantly from those used for control problems with reflection, with new techniques developed of interest on its own. Further, we also prove a new estimate for RBSDEs being sharper than that in the paper of El Karoui, Kapoudjian, Pardoux, Peng and Quenez (1997), which turns out to be very useful because it allows us to estimate the L p-distance of the solutions of two different RBSDEs by the p-th power of the distance of the initial values of the driving forward equations. We also show that the unique viscosity solution to the approximating Isaacs equation constructed by the penalization method converges to the viscosity solution of the Isaacs equation with obstacle.

0

上传时间

2021年03月30日

【期刊论文】Stochastic representation for solutions of Isaacs’ type integral–partial differential equations

Stochastic Processes and their Applications,2011,121(12):2715-2750

2011年12月01日

摘要

In this paper we study the integral–partial differential equations of Isaacs’ type by zero-sum two-player stochastic differential games (SDGs) with jump-diffusion. The results of Fleming and Souganidis (1989) [9] and those of Biswas (2009) [3] are extended, we investigate a controlled stochastic system with a Brownian motion and a Poisson random measure, and with nonlinear cost functionals defined by controlled backward stochastic differential equations (BSDEs). Furthermore, unlike the two papers cited above the admissible control processes of the two players are allowed to rely on all events from the past. This quite natural generalization permits the players to consider those earlier information, and it makes more convenient to get the dynamic programming principle (DPP). However, the cost functionals are not deterministic anymore and hence also the upper and the lower value functions become a priori random fields. We use a new method to prove that, indeed, the upper and the lower value functions are deterministic. On the other hand, thanks to BSDE methods (Peng, 1997) [18] we can directly prove a DPP for the upper and the lower value functions, and also that both these functions are the unique viscosity solutions of the upper and the lower integral–partial differential equations of Hamilton–Jacobi–Bellman–Isaacs’ type, respectively. Moreover, the existence of the value of the game is got in this more general setting under Isaacs’ condition.

Stochastic differential games Poisson random measure Value function Backward stochastic differential equations Dynamic programming principle Integral–partial differential operators Viscosity solution

0

上传时间

2021年03月30日

【期刊论文】Stochastic maximum principle in the mean-field controls

Automatica,2012,48(2):366-373

2012年02月01日

摘要

In Buckdahn, Djehiche, Li, and Peng (2009), the authors obtained mean-field Backward Stochastic Differential Equations (BSDEs) in a natural way as a limit of some highly dimensional system of forward and backward SDEs, corresponding to a great number of “particles” (or “agents”). The objective of the present paper is to deepen the investigation of such mean-field BSDEs by studying their stochastic maximum principle. This paper studies the stochastic maximum principle (SMP) for mean-field controls, which is different from the classical ones. This paper deduces an SMP in integral form, and it also gets, under additional assumptions, necessary conditions as well as sufficient conditions for the optimality of a control. As an application, this paper studies a linear quadratic stochastic control problem of mean-field type.

0

上传时间

2021年03月30日

【期刊论文】Optimal Control Problems of Fully Coupled FBSDEs and Viscosity Solutions of Hamilton--Jacobi--Bellman Equations Read More: https://epubs.siam.org/doi/abs/10.1137/100816778

SIAM J. Control Optim.,2014,52(3):1622–1662

2014年05月13日

摘要

In this paper we study stochastic optimal control problems of fully coupled forward-backward stochastic differential equations (FBSDEs). The recursive cost functionals are defined by controlled fully coupled FBSDEs. We use a new method to prove that the value functions are deterministic, satisfy the dynamic programming principle, and are viscosity solutions to the associated generalized Hamilton--Jacobi--Bellman (HJB) equations. For this we generalize the notion of stochastic backward semigroup introduced by Peng Topics on Stochastic Analysis, Science Press, Beijing, 1997, pp. 85--138. We emphasize that when $\sigma$ depends on the second component of the solution $(Y, Z)$ of the BSDE it makes the stochastic control much more complicated and has as a consequence that the associated HJB equation is combined with an algebraic equation. We prove that the algebraic equation has a unique solution, and moreover, we also give the representation for this solution. On the other hand, we prove a new local existence and uniqueness result for fully coupled FBSDEs when the Lipschitz constant of $\sigma$ with respect to $z$ is sufficiently small. We also establish a generalized comparison theorem for such fully coupled FBSDEs.

0

合作学者

  • 暂无合作作者