您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者10条结果 成果回收站

上传时间

2007年11月18日

【期刊论文】Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66

张立新, JianLan You, , XiaoLi Xue, LiXiang Cao, Xin Lu, Jian Wang, LiXin Zhang, ShiNing Zhou

Appl Microbiol Biotechnol (2007) 76: 1137-1144,-0001,():

-1年11月30日

摘要

China remains by far the largest aquaculture producer in the world. However, biofilms formed by pathogenic Vibrio strains pose serious problems to marine aquaculture. To provide a strategy for biofilm prevention, control, and eradication, extracts from 88 marine actinomycetes were screened. Thirty-five inhibited the biofilm formation of Vibrio harveyi, Vibrio vulnificus, and Vibrio anguillarum at a concentration of 2.5% (v/v). Thirty-three of the actinomycete extracts dispersed the mature biofilm. Six extracts inhibited the quorum-sensing system of V. harveyi by attenuating the signal molecules N-acylated homoserine lactones’ activity. Strain A66, which was identified as Steptomyces albus, both attenuated the biofilms and inhibited their quorum-sensing system. It is suggested that strain A66 is a promising candidate to be used in future marine aquaculture.

Vibrio biofilm, Quorum sensing, Biocontrol

上传时间

2007年11月18日

【期刊论文】Improved production of erythromycin A by expression of a heterologous gene encoding S-adenosylmethionine synthetase

张立新, Yong Wang, YiGuang Wang, Ju Chu, Yingping Zhuang, Lixin Zhang, , Siliang Zhang

Appl Microbiol Biotechnol (2007) 75: 837-842,-0001,():

-1年11月30日

摘要

An S-adenosylmethionine synthetase (SAM-s) gene from Streptomyces spectabilis was integrated along with vector DNA into the chromosome of a Saccharopolyspora erythraea E2. Elevated production of SAM was observed in the recombinant strain Saccharopolyspora erythraea E1. The results from the bioassay showed that the titer of erythromycin was increased from 920 IU ml−1 by E2 to approximately 2,000 IU ml−1 by E1. High performance liquid chromatography (HPLC) analysis revealed that there was a 132% increase in erythromycin A compared with the original strain, while the erythromycin B, the main impurity component in erythromycin, was decreased by 30%. The sporulation process was inhibited, while the SAM-s gene was expressed. The addition of the exogenous SAM also inhibited sporulation and promoted an increase in erythromycin titers.

S-adenosylmethionine synthetase, Erythromycin A, Precision engineering, Saccharopolyspora erythraea

上传时间

2007年11月18日

【期刊论文】High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections

张立新, Lixin Zhang, , Kezhi Yan, Yu Zhang, Ren Huang, Jiang Bian, Chuansen Zheng, Haixiang Sun, Zhihui Chen, Nuo Sun, Rong An, Fangui Min, Weibo Zhao, Ying Zhuo, Jianlan You, Yongjie Song, Zhenyan Yu, Zhiheng Liu, Keqian Yang, Hong Gao, Huanqin Dai, Xiaoli Zhang, Jian Wang, Chengzhang Fu, Gang Pei, Jintao Liu, Si Zhang, Michael Goodfellow, Yuanying Jiang, Jun Kuai, Guochun Zhou, Xiaoping Chen

PNAS March 13, 2007, Vol. 104, No. 11, 4606-4611,-0001,():

-1年11月30日

摘要

The high mortality rate of immunocompromised patients with fungal infections and the limited availability of highly efficacious and safe agents demand the development of new antifungal therapeutics. To rapidly discover such agents, we developed a high-throughput synergy screening (HTSS) strategy for novel microbial natural products. Specifically, a microbial natural product library was screened for hits that synergize the effect of a low dosage of ketoconazole (KTC) that alone shows little detectable fungicidal activity. Through screening of ≈20,000 microbial extracts, 12 hits were identified with broadspectrum antifungal activity. Seven of them showed little cytotoxicity against human hepatoma cells. Fractionation of the active extracts revealed beauvericin (BEA) as the most potent component, because it dramatically synergized KTC activity against diverse fungal pathogens by a checkerboard assay. Significantly, in our immunocompromised mouse model, combinations of BEA (0.5 mg/kg) and KTC (0.5 mg/kg) prolonged survival of the host infected with Candida parapsilosis and reduced fungal colony counts in animal organs including kidneys, lungs, and brains. Such an effect was not achieved even with the high dose of 50 mg/kg KTC. These data support synergism between BEA and KTC and thereby a prospective strategy for antifungal therapy.

上传时间

2007年11月18日

【期刊论文】Exploring novel bioactive compounds from marine microbes

张立新, Lixin Zhang, , Rong An, Jinping Wang, Nuo Sun, Si Zhang, Jiangchun Hu, Jun Kuai

Current Opinion in Mirobiology 2005, 8: 276-281,-0001,():

-1年11月30日

摘要

The historical paradigm of the deep ocean as a biological ‘desert’ has shifted to one of a ‘rainforest’ owing to the isolation of many novel microbes and their associated bioactive compounds. Recently, there has been an explosion of information about novel bioactive compounds that have been isolated from marine microbes in an effort to further explore the relatively untapped marine microbes and their secondary metabolites for drug discovery. The microbes are recovered and purified from the ocean by both conventional and innovative isolation methods to obtain those previously thought to be ‘uncultivable’. To overcome the difficulties and limitations associated with cultivation techniques, several DNA-based molecular methods have been developed to bypass the culture-dependent bottleneck. Bioactive compounds isolated using the above strategies have not only shown importance in biotechnological and pharmaceutical applications but have also increased our understanding of the diversity of marine microbiota, ecosystem functions and the exploitable biology.

上传时间

2007年11月18日

【期刊论文】cDNA microarray analysis of differential gene expression and regulation in clinically drug-resistant isolates of Candida albicans from bone marrow transplanted patients

张立新, Zheng Xu, Li-Xin Zhang, Jun-Dong Zhang, Yong-Bing Cao, Yuan-Yuan Yu, De-Jun Wang, Kang Ying, Wan-Sheng Chen, Yuan-Ying Jiang

International Journal of Medical Microbiology 296 (2006) 421-434,-0001,():

-1年11月30日

摘要

Fungi have emerged as the fourth most common pathogens isolated in nosocomial bloodstream infections, and Candida albicans is the most common human fungal pathogen. Only a few antibiotics are effective in the treatment of fungal infections. In addition, the repetition and lengthy duration of fluconazole therapy has led to an increased incidence of azole resistance and treatment failure associated with C. albicans. To investigate the mechanism of drug resistance and explore new targets to treat clinically resistant fungal pathogens, we examined the large-scale gene expression profile of two sets of matched fluconazole-susceptible and -resistant bloodstream C. albicans isolates from bone marrow transplanted (BMT) patients for the first time by microarray analysis. More than 198 differentially expressed genes were identified and they were confirmed and validated by RT-PCR independently. Not surprisingly, the resistant phenotype is associated with increased expression of CDR mRNA, as well as some common genes involved in drug resistance such as CaIFU5, CaRTA2 and CaIFD6. Meanwhile, some special functional groups of genes, including ATP binding cassette (ABC) transporter genes (IPF7530, CaYOR1, CaPXA1), oxidative stress response genes (CaALD5, CaGRP1, CaSOD2, IPF10565), copper transport and iron mobilization-related genes (CaCRD1/2, CaCTR1/2, CaCCC2, CaFET3) were found to be differentially expressed in the resistant isolates. Furthermore, among these differentially expressed genes, some co-regulated with CaCDR1, CaCDR2 and CaIFU5, such as CaPDR16 and CaIFD6, have a DRE-like element and may interact with TAC1 in the promoter region. These findings may shed light on mechanisms of azole resistance in C. albicans and clinical antifungal therapy.

Candida albicans, Microarray, Drug resistance, Bone marrow transplant, Differential gene expression

合作学者

  • 张立新 邀请

    中国科学院微生物研究所,北京

    尚未开通主页