您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者20条结果 成果回收站

上传时间

2010年12月15日

【期刊论文】The Evolving Genome of Salmonella enterica Serovar Pullorum

刘树林, Gui-Rong Liu, , Andrea Rahn, ? Wei-Qiao Liu, Kenneth E. Sanderson, Randal N. Johnston, and Shu-Lin Liu, *

JOURNAL OF BACTERIOLOGY, May 2002, p.2626-2633,-0001,():

-1年11月30日

摘要

Salmonella enterica serovar Pullorum is a fowl-adapted bacterial pathogen that causes dysentery (pullorum disease). Host adaptation and special pathogenesis make S. enterica serovar Pullorum an exceptionally good system for studies of bacterial evolution and speciation, especially regarding pathogen-host interactions and the acquisition of pathogenicity. We constructed a genome map of S. enterica serovar Pullorum RKS5078, using I-CeuI, XbaI, AvrII, and SpeI and Tn10 insertions. Pulsed-field gel electrophoresis was employed to separate the large DNA fragments generated by the endonucleases. The genome is 4,930 kb, which is similar to most salmonellas. However, the genome of S. enterica serovar Pullorum RKS5078 is organized very differently from the majority of salmonellas, with three major inversions and one translocation. This extraordinary genome structure was seen in most S. enterica serovar Pullorum strains examined, with different structures in a minority of S. enterica serovar Pullorum strains. We describe the coexistence of different genome structures among the same bacteria as genomic plasticity. Through comparisons with S. enterica serovar Typhimurium, we resolved seven putative insertions and eight deletions ranging in size from 12 to 157 kb. The genomic plasticity seen among S. enterica serovar Pullorum strains supported our hypothesis about its association with bacterial evolution: a large genomic insertion (157 kb in this case) disrupted the genomic balance, and rebalancing by independent recombination events in individual lineages resulted in diverse genome structures. As far as the structural plasticity exists, the S. enterica serovar Pullorum genome will continue evolving to reach a further streamlined and balanced structure.

上传时间

2010年12月15日

【期刊论文】Bacterial Phylogenetic Clusters Revealed by Genome Structure

刘树林, SHU-LIN LIU, * ANTHONY B. SCHRYVERS, KENNETH E. SANDERSON, AND RANDAL N. JOHNSTON

JOURNAL OF BACTERIOLOGY, Nov. 1999, p.6747-6755,-0001,():

-1年11月30日

摘要

Current bacterial taxonomy is mostly based on phenotypic criteria, which may yield misleading interpretations in classification and identification. As a result, bacteria not closely related may be grouped together as a genus or species. For pathogenic bacteria, incorrect classification or misidentification could be disastrous. There is therefore an urgent need for appropriate methodologies to classify bacteria according to phylogeny and corresponding new approaches that permit their rapid and accurate identification. For this purpose, we have devised a strategy enabling us to resolve phylogenetic clusters of bacteria by comparing their genome structures. These structures were revealed by cleaving genomic DNA with the endonuclease I-CeuI, which cuts within the 23S ribosomal DNA (rDNA) sequences, and by mapping the resulting large DNA fragments with pulsed-field gel electrophoresis. We tested this experimental system on two representative bacterial genera: Salmonella and Pasteurella. Among Salmonella spp., I-CeuI mapping revealed virtually indistinguishable genome structures, demonstrating a high degree of structural conservation. Consistent with this, 16S rDNA sequences are also highly conserved among the Salmonella spp. In marked contrast, the Pasteurella strains have very different genome structures among and even within individual species. The divergence of Pasteurella was also reflected in 16S rDNA sequences and far exceeded that seen between Escherichia and Salmonella. Based on this diversity, the Pasteurella haemolytica strains we analyzed could be divided into 14 phylogenetic groups and the Pasteurella multocida strains could be divided into 9 groups. If criteria for defining bacterial species or genera similar to those used for Salmonella and Escherichia coli were applied, the striking phylogenetic diversity would allow bacteria in the currently recognized species of P. multocida and P. haemolytica to be divided into different species, genera, or even higher ranks. On the other hand, strains of Pasteurella ureae and Pasteurella pneumotropica are very similar to those of P. multocida in both genome structure and 16S rDNA sequence and should be regarded as strains within this species. We conclude that large-scale genome structure can be a sensitive indicator of phylogenetic relationships and that, therefore, I-CeuI-based genomic mapping is an efficient tool for probing the phylogenetic status of bacteria.

上传时间

2010年12月15日

【期刊论文】Role of Genomic Rearrangements in Producing New Ribotypes of Salmonella typhi

刘树林, IVY NG, SHU-LIN LIU, ? AND KENNETH E. SANDERSON*

JOURNAL OF BACTERIOLOGY, June 1999, p.3536-3541,-0001,():

-1年11月30日

摘要

Salmonella typhi is the only species of Salmonella which grows exclusively in humans, in whom it causes enteric typhoid fever. Strains of S. typhi show very little variation in electrophoretic types, restriction fragment length polymorphisms, cell envelope proteins, and intervening sequences, but the same strains are very heterogeneous for ribotypes which are detected with the restriction endonuclease PstI. In addition, the genome of S. typhi has been proven to undergo genomic rearrangement due to homologous recombination between the seven copies of rrn genes. The relationship between ribotype heterogeneity and genomic rearrangement was investigated. Strains of S. typhi which belong to 23 different genome types were analyzed by ribotyping. A limited number of ribotypes were found within the same genome type group; e.g., most strains of genome type 3 belonged to only two different ribotypes, which result from recombination between rrnH and rrnG operons. Different genome type groups normally have different ribotypes. The size and identity of the PstI fragment containing each of the seven different rrn operons from S. typhi Ty2 were determined, and from these data, one can infer how genomic rearrangement forms new ribotypes. It is postulated that genomic rearrangement, rather than mutation, is largely responsible for producing the ribotype heterogeneity in S. typhi.

上传时间

2010年12月15日

【期刊论文】Homologous recombination between rrn operons rearranges the chromosome in host-specialized species of Salmonella

刘树林, Shu-Lin Liu, Kenneth E. Sanderson *

FEMS Microbiology Letters 164 (1998) 275-281,-0001,():

-1年11月30日

摘要

Partial digestion with I-CeuI, which digests bacterial DNA at the gene coding for the large subunit rRNA, established the rrn genomic skeleton (the distance in kb between rRNA operons) in 56 strains of Salmonella, from Salmonella Reference B (SARB) set. All had seven I-CeuI sites, indicating seven rrn operons. The order of I-CeuI fragments was ABCDEFG in S. typhimurium LT2 and in 31 other species, mostly host-generalists; in S. typhi, S. paratyphi C, S. gallinarum, and S. pullorum (host-specialized species), these fragments are rearranged, due to homologous recombination between the rrn operons. Rearrangements, such as inversions and translocations not involving the rrn operons, are rare. I-CeuI fragments of some species are larger than the norm, suggesting the insertion of unique blocks of DNA by lateral transfer from other species.

Salmonella, Chromosome, I-CeuI, Pulsed-field gel electrophoresis

上传时间

2010年12月15日

【期刊论文】The Chromosome of Salmonella paratyphi A Is Inverted by Recombination between rrnH and rrnG

刘树林, SHU-LIN LIU AND KENNETH E. SANDERSON*

JOURNAL OF BACTERIOLOGY, Nov. 1995, p.6585-6592,-0001,():

-1年11月30日

摘要

Salmonella paratyphi A, a human-adapted bacterial pathogen, causes paratyphoid enteric fever. We established the genome map of strain ATCC 9150 by the use of four endonucleases, XbaI, I-CeuI, AvrII (5 BlnI), and SpeI, which generated 27, 7, 19, and 38 fragments, respectively; the sum of the fragments in each case indicates a genome size of ca. 4,600 kb. With phage P22, we transduced Tn10 insertions in known genes from Salmonella typhimurium LT2 to S. paratyphi A ATCC 9150 and located these insertions on the S. paratyphi A chromosome through the XbaI and AvrII sites in Tn10 and through the increased size of the SpeI fragment bearing a Tn10. Compared with the maps of other Salmonella species, the S. paratyphi A genomic map showed two major differences: (i) an insertion of about 100 kb of DNA between rrnH/G and proB and (ii) an inversion of half the genome between rrnH and rrnG, postulated to be due to homologous recombination between the rrn genes. We propose that during the evolution of S. paratyphi A, the first rearrangement event was the 100-kb insertion, which disrupted the chromosomal balance between oriC and the termination of replication, forcing the rrnH/G inversion to restore the balance. The insertion and the inversion are both present in all 10 independent wild-type S. paratyphi A strains tested.

合作学者

  • 刘树林 邀请

    北京大学,北京

    尚未开通主页