您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者12条结果 成果回收站

上传时间

2007年08月12日

【期刊论文】Porphyrinated Nanofibers via Copolymerization and Electrospinning

徐志康

,-0001,():

-1年11月30日

摘要

The first example of the synthesis of acrylonitrile copolymers with porphyrin pendants and the subsequent electrospinning of the resultant copolymers into nanofibers is presented in this communication. Vinyl porphyrin monomers have been synthesized and copolymerized with acrylonitrile through solution polymerization. FT-IR, NMR, UV-vis, and fluorescence spectroscopy are used to characterize the copolymers. Preliminary quantum chemical calculations have also been carried out to reveal the activity of the vinyl porphyrin monomers. Nanofibers with a diameter of around 330 nm are prepared by electrospinning the copolymer solutions. Their morphology and porphyrination are clearly observed by fieldemission scanning electron microscopy and fluorescence microscopy. It is speculated that this type of nanofiber may be a latent support of porphyrins for various purposes such as catalysis, molecular imprinting, sensors, and light/energy conversion.

electrospinning, luminescence, nanofiber, polyacrylonitrile, porphyrin

上传时间

2004年12月30日

上传时间

2007年08月12日

【期刊论文】Novel Photoinduced Grafting-Chemical Reaction Sequence for the Construction of a Glycosylation Surface

徐志康

,-0001,():

-1年11月30日

摘要

Carbohydrates play a major role in many recognition events, such as blood coagulation, immune response, fertilization, cell growth, embryogenesis, and cellular signal transfer, which are essential for the survival of living entities. Synthetic carbohydrate-based polymers, so-called glycopolymers, are emerging as important well-defined tools for investigating carbohydrate-based biological processes and for simulating various functions of carbohydrates. In this work, we present a facile strategy for the formation of glycopolymer tethered on polypropylene microporous membrane surface. Acrylamide was grafted onto the polypropylene microporous membrane surface by photoinduced graft polymerization in the presence of benzophenone. The amide groups of grafted poly(acrylamide) were then transformed to primary amine groups by the Hofmann rearrangement reaction. Quantificational evaluation of the rearrangement reaction was carried out by ninhydrin method and mass weighting. Sugar moieties were coupled with the grafted functional layer to form glycopolymer by the reaction between primary amine groups and carbohydrate lactones. The grafting of acrylamide, the conversion of amide groups to amine groups, and the coupling of sugar moieties were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy combined with surface morphology observation by scanning electron microscopy.

上传时间

2004年12月30日

上传时间

2007年08月12日

【期刊论文】Nanofibrous Membranes Containing Carbon Nanotubes: Electrospun for Redox Enzyme Immobilization

徐志康

,-0001,():

-1年11月30日

摘要

Nanofibrous membranes that possess reactive groups are fabricated by the electrospinning process from PANCAA solutions that contain MWCNTs. Field emission scanning electron microscopy is used to evaluate the morphology and diameter of the nanofibers. Potentials for applying these nanofibrous membranes to immobilize redox enzymes by covalent bonding are explored. It is envisaged that the electrospun nanofibrous membranes could provide a large specific area and the MWCNTs could donate/accept electrons for the immobilized redox enzymes. Results indicate that, after blending with MWCNTs, the diameter of the PANCAA nanofiber increases slightly. The PANCAA/ MWCNT nanofibrous membranes immobilize more enzymes than that without MWCNTs. Moreover, as the concentration of the MWCNTs increases, the activity of the immobilized catalase is enhanced by about 42%, which is mainly attributed to the promoted electron transfer through charge-transfer complexes and the p system of MWCNTs.

carbon nanotubes, catalase, electrospinning, enzyme immobilization, enzymes, membranes, nanofibrous membranes, poly(, acrylonitrile-co-acrylic acid),

合作学者

  • 徐志康 邀请

    浙江大学,浙江

    尚未开通主页