您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者12条结果 成果回收站

上传时间

2009年01月22日

【期刊论文】Electric potential control of DNA immobilization on gold electrode

顾宁, Cunwang Ge*, Jianhui Liao, Wei Yu, Ning Gu

Biosensors and Bioelectronics 18(2003)53-58,-0001,():

-1年11月30日

摘要

The assembly of synthetic, controllable molecules is one of the goals in nanotechnology. The primary objective of this contribution is to selectively immobilize DNA on gold via electric potential control. The self-assembly monolayer (SAM) was prepared with 2-aminoethanethiol (AET) on the gold electrode. A new approach based on electric potential was firstly used to control DNA immobilization covalently onto the SAM with the activation of 1-ethyl-3(3-dimethyl-aminopropyl)-carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS) in low ionic strength solution. The influence of electric potential on DNA immobilization was investigated by means of cyclic voltammogram, A.C. impedance, auger electron spectrometer as well as atomic force microscope (AFM) on template-stripped gold surface. The result proves that controlled potential can affect the course of DNA immobilization. More negative potential can restrain the DNA immobilization, while the more positive potential can accelerate the DNA immobilization. It is of great significance for the control of DNA self-assembly and will find wide application in the fields of DNA-based devices.

DNA immobilize, Controlled potential, DNA-based device

上传时间

2009年01月22日

【期刊论文】Self-assembly of length-tunable gold nanoparticle chains in organic solvents

顾宁, J.H. liao, K.J. chen, I.N. xu, C.W. ge, J.wang, I. Huang, N. Gu

,-0001,():

-1年11月30日

摘要

The one-dimensional coagulation of gold colloidal particles dispersed in organic solvent was investigated with transmission electron microscopy. The results indicate that the length of the nanoparticle chains can be modulated by changing the concentration of the solutions. It was also demonstrated that thewetting of the substrate surface hardly influenced themorphology of the nanoparticle chains, which revealed that the particle chains had been formed in the solution before deposition on the substrates. A general theoretical interpretation is provided to explain the linear coagulation of gold colloidal particles, on the basis of the asymmetrical distribution of the charges absorbed on the surface of the gold colloidal particles, as well as the action of the solvent molecules.

合作学者

  • 顾宁 邀请

    东南大学,江苏

    尚未开通主页