您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者31条结果 成果回收站

上传时间

2020年11月25日

【期刊论文】Physarum-energy optimization algorithm

冯翔, 刘阳, 虞慧群, 罗飞

Soft Computing,2017,23(3):871-888

2017年09月01日

摘要

In general, the existing evolutionary algorithms are prone to premature convergence and slow convergence in coping with combinatorial optimization problems. So an intelligent optimization algorithm called physarum-energy optimization algorithm (PEO) is proposed and put TSP as the carrier in this paper. This algorithm consists of four parts: the physarum biological model, the energy model, the age factor model and the stochastic disturbance model. First, the high parallelism of PEO is enlightened from the physarum’s low complexity and high parallelism. Second, we present an energy mechanism model in PEO, which is mainly to develop the shortcomings of existing algorithm, such as slow convergence and lack of interaction capability. Third, inspired by the characteristic of ants’ spatiotemporal variations, the age factor mechanism is introduced to raise search capacity, which can control the convergence speed and precision ability of PEO. In addition, in order to avoid premature convergence, the stochastic disturbance mechanism is adopted into PEO. And also the feasibility and convergence of PEO has been analyzed and verified theoretically. Moreover, we compare the algorithm and other algorithms to TSPs of diverse scope. The experiment results show that PEO has the advantages of excellent global optimization, high optimization accuracy and high parallelism and is significantly better than other algorithms.

Physarum optimization algorithm, Energy mechanism, Age factor, Traveling salesman problem

上传时间

2020年11月25日

【期刊论文】Particle State Change Algorithm

冯翔, 许瀚誉, 虞慧群, 罗飞

Soft Computing,2017,22(8):2641-2666

2017年02月28日

摘要

The matter state change, which is a common phenomenon in nature, shows the process that the matter how to reach the optimal state in the environment. This paper presents a novel particle state change model (PSCM) inspired by mimicking the process of the matter state change. Based on PSCM, a novel particle state change (PSC) algorithm is proposed for solving continuous optimization problems. As a new algorithm, PSC has many differences from other similar nature-inspired algorithms in terms of the basic principle models, mathematical formalization and properties. This paper considers three states of the matter, namely gas state, liquid state and solid state. In a certain circumstance, the matter always converts from an unstable state into a stable state. It is similar to find the optimal solution of an optimization problem. The proposed algorithm also has the advantages in the respects of higher intelligence, effectiveness and lower computation complexity. And the convergence property of PSC is discussed in detail. In order to illustrate the ability of solving optimization problems in continuous domain, the new proposed algorithm is tested on basic function optimization, CEC2016 single-objective real-parameter numerical optimization and CEC2016 learning-base real-parameter single-objective optimization, and compared with eleven existing algorithms. The numerous simulations have shown the effectiveness and suitability of the proposed approach.

Particle state change algorithm, Natureinspired algorithm, Matter state change, Numerical function optimization

上传时间

2015年05月05日

【期刊论文】Parallel Physics-inspired Waterflow Particle Mechanics Algorithm for Load Rebalancing

冯翔, Francis C.M. Lau

Computer Networks,2010,54(11):1767-1777

2010年02月10日

摘要

The Load Rebalancing Problem (LRP) that reassigns tasks to processors so as to minimize the maximum load arises in the context of dynamic load balancing. Many applications such as on Web based environment, parallel computing on clusters can be stated as LRP. Solving LRP successfully would allow us to utilize resources better and achieve better performance. However LRP has been proven to be NP-hard, thus generating the exact solutions in tractable amount of time becomes infeasible when the problems become large. We present a new nature-inspired approximation algorithm based on the Waterflow Particle Mechanics (W-PM) model to compute in parallel approximate efficient solutions for LRPs. Just like other Nature-inspired Algorithms (NAs) drawing from observations of physical processes that occur in nature, the W-PM algorithm is inspired by kinematics and dynamics of waterflow. The W-PM algorithm maps the classical LRP to the flow of water flows in channels by corresponding mathematical model in which all water flows flow according to certain defined rules until reaching a stable state. By anti-mapping the stable state, the solution to LRP can be obtained.

Load rebalancing, Approximation algorithm, Nature-inspired algorithm, Waterflow particle mechanics model, Distributed and parallel algorithm

上传时间

2020年11月25日

【期刊论文】Group Mosquito Host-Seeking Algorithm

冯翔, 刘晓婷, 虞慧群

Applied Intelligence,2015,44(3):665-686

2015年11月04日

摘要

The host-seeking behavior of mosquitoes is very interesting. This paper is motivated by the following general observation on mosquito groups and their host-seeking behavior in nature: (1) Mosquitoes’ behavior has possession of the parallelism, openness, local interactivity and self-organization. (2) Mosquito groups seek host very fast. (3) The host-seeking behavior is similar to the producerscrounger process, which assumes that group members search either for “finding” (producer) or for “joining” (scrounger) opportunities. It stimulates us to extend a mosquito system model in nature to group mosquito hostseeking model (GMHSM) and algorithm (GMHSA) for intelligent computing. In this paper, we propose GMHS approach and show how to use it. By GMHSM, the TSP is transformed into the kinematics and dynamics of mosquito groups host-seeking process. The properties of GMHSM and GMHSA, including the correctness, convergence and stability, have been discussed in this paper. The GMHS approach has many advantages in terms of multiple objective optimization, large-scale distributed parallel optimization, effectiveness of problem-solving and suitability for complex environment. Via simulations, we test the GMHS approach and compare it with other state-of-art algorithms.

Group Mosquito Host-Seeking Model (, GMHSM), and algorithm (, GMHSA), , Leader decision, Traveling Salesman Problem (, TSP), , Distributed and parallel algorithm

上传时间

2020年11月25日

【期刊论文】Group Competition-Cooperation Optimization Algorithm

冯翔, 陈海娟

Applied Intelligence,2021,51(4):1813-1828

2021年04月30日

摘要

In order to solve complex practical problems, the model of deep learning can not be limited to models such as deep neural networks. To deepen the learning model, we must actively explore various depth models. Based on this, we propose a deep evolutionary algorithm, that is group competition cooperation optimization (GCCO) algorithm. Unlike the deep learning, in the GCCO algorithm, depth is mainly reflected in multi-step iterations, feature transformation, and models are complex enough. Firstly, the bio-group model is introduced to simulate the behavior that the animals hunt for the food. Secondly, according to the rules of mutual benefit and survival of the fittest in nature, the competition model and cooperation model are introduced. Furthermore, in the individual mobility strategy, the wanderers adopt stochastic movement strategy based on feature transformation to avoid local optimization. The followers adopt the variable step size region replication method to balance the convergence speed and optimization precision. Finally, the GCCO algorithm and the other three comparison algorithms are used to test the performance of the algorithm on ten optimization functions. At the same time, in the actual problem of setting up the Shanghai gas station the to improve the timely rate, GCCO algorithm achieves better performance than the other three algorithms. Moreover, Compared to the Global Search, the GCCO algorithm takes less time to achieve similar effects to the Global Search.

Deep evolution, Competition model, Cooperation model, Feature transformation

合作学者

  • 冯翔 邀请

    华东理工大学,上海

    尚未开通主页