您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者18条结果 成果回收站

上传时间

2005年04月13日

【期刊论文】INTERFACIAL DEBONDING OF A CIRCULAR INHOMOGENEITY IN PIEZOELECTRIC MATERIALS

仲政, Z. ZHONG † and S. A. MEGUID

Int. J Solids Structusres Vol. 34, No.16. pp. 1965,-0001,():

-1年11月30日

摘要

A generalized and mathematically rigorous model is developed to treat the partially-debonded circular inhomogeneity problem in piezoelectric materials under antiplane shear and in plane electric field using the complex variable method. The principle of analytical continuation and the complex series expansion method were employed to reduce the formulations into Riemann Hilbert problems. This enabled the explicit determination of the complex potentials inside the inhomogeneity and the matrix. The resulting closed form expressions were then used to obtain the energy release rate for several interesting cases involving partial-debonding at the inhomogeneity-matrix interface.

上传时间

2005年04月13日

【期刊论文】Analysis of a transversely isotropic rod containing a single cylindrical inclusion with axisymmetric eigenstrains

仲政, Z. Zhong a, *, Q.P. Sun b

International Journal of Solids and Structures 39(2002)5753-5765,-0001,():

-1年11月30日

摘要

This paper studies a transversely isotropic rod containing a single cylindrical inclusion with axisymmetric eigenstrains. The analytical elastic solution is obtained for the displacements, stresses and elastic strain energy of the rod. The effects of microstructural parameters and its evolution on the elastic stress and strain fields as well as the strain energy of the rod are quantitatively demonstrated through examples.

上传时间

2005年04月13日

【期刊论文】Analysis of a Mode Ⅲ Crack in a Functionally Gradient Piezoelectric Material

仲政, Z. Zhong , D. W. Shu and B. Jin

Materials Science Forum Vols. 423-425,-0001,():

-1年11月30日

摘要

In this paper we studied a finite crack in an infinite medium made of a functionally gradient piezoelectric material subjected to antiplane shear and inplane electric field. The material properties, including the elastic shear modulus, the piezoelectric modulus and the dielectric modulus are assumed to vary exponentially with spatial position. By means of Fourier transformation, the governing equations of the problem are firstly reduced to two pairs of dual integral equations and then to a Fredholm integral equation of second kind. The electroelastic fields are completely determined and the field intensity factors can be defined. It is found that the stress and the electric displacement have the inverse square-root singularity at the crack tip as that of homogeneous piezoelectric materials, and the stress intensity factor and the electric displacement intensity factor increase with the increase of the material gradient constant of functionally gradient piezoelectric materials.

piezoelectricity, crack, stress intensity factor

合作学者

  • 仲政 邀请

    哈尔滨工业大学,黑龙江

    尚未开通主页