您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者20条结果 成果回收站

上传时间

2005年10月10日

【期刊论文】Shafarevich's Conjecture for CY Manifolds Ⅰ (Moduli of CY Manifolds)

刘克峰, Kefeng Liu, Andrey Todorov, Shing-Tung Yau, Kang Zuo

,-0001,():

-1年11月30日

摘要

In this paper we first study the moduli spaces related to Calabi-Yau manifolds. We then apply the results to the following problem. Let C be a fixed Riemann surface with fixed finite number of points on it. Given a CY manifold with fixed topological type, we consider the set of all families of CY manifolds of the fixed topological type over C with degenerate fibres over the fixed points up to isomorphism. This set is called Shafarevich set. The analogue of Shafarevich conjecture for CY manifolds is for which topological types of CY the Shafarevich set is finite. It is well-known that the analogue of Shafarevich conjecture is closely related to the study of the moduli space of polarized CY manifolds and the moduli space of the maps of fixed Riemann surface to the coarse moduli space of the CY manifolds. We prove the existence of the Teichmuller space of CY manifolds together with a universal family of marked CY manifolds. From this result we derive the existence of a finite cover of the coarse moduli space which is a non-singular quasi-projective manifold. Over this cover we construct a family of polarized CY manifolds. We study the moduli space of maps of the fixed Riemann with fixed points on it to the moduli space of CY manifolds constructed in the paper such that the maps map the fixed points on the Riemann surface to the discriminant locus. If this moduli space of maps is finite then Shafarevich conjecture holds. We relate the analogue of Shafarevich problem to the non-vanishing of the Yukawa coupling. We give also a counter example of the Shafarevich problem for a class of CY manifolds.

上传时间

2005年10月10日

【期刊论文】HEAT KERNEL AND MODULI SPACES Ⅱ

刘克峰, KEFENG LIU

,-0001,():

-1年11月30日

摘要

上传时间

2005年10月10日

【期刊论文】Heat Kernels, Symplectic Geometry, Moduli Spaces and Finite Groups

刘克峰, Kefeng Liu

,-0001,():

-1年11月30日

摘要

上传时间

2005年10月10日

【期刊论文】GEOMETRIC ASPECTS OF THE MODULI SPACE OF RIEMANN SURFACES

刘克峰, KEFENG LIU, XIAOFENG SUN, AND SHING-TUNG YAU

,-0001,():

-1年11月30日

摘要

上传时间

2005年10月10日

【期刊论文】Adiabatic Limits and Foliations

刘克峰, Kefeng Liu and Weiping Zhang

,-0001,():

-1年11月30日

摘要

We use adiabatic limits to study foliated manifolds. The Bott connection naturally shows up as the adiabatic limit of Levi-Civita connections. As an application, we then construct certain natural elliptic operators associated to the foliation and present a direct geometric proof of a vanshing theorem of Connes[Co], which extends the Lichnerowicz vanishing theorem [L] to foliated manifolds with spin leaves, for what we call almost Riemannian foliations. Several new vanishing theorems are also proved by using our method.

合作学者

  • 刘克峰 邀请

    浙江大学,浙江

    尚未开通主页