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Abstract: An n-color 1-2 composition is an n-color composition have only part of size 1 or 2. An n-color 1-2 palindromic composition is an n-color 1-2 composition in which the parts are ordered such that they are read the same forward and backwards. In this paper, we get generating function, explicit formulas and recurrence relations for n-color 1-2 compositions and n-color 1-2 palindromic compositions. In addition, we give a relation between the number of n-color 1-2 compositions and the number of n-color 1-2 palindromic compositions.
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In the classical theory of partitions, compositions were first defined by MacMahon[1] as ordered partitions. For example, there are 5 partitions and 8 compositions of 4. The partitions are 
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The theory of partitions has become quite well-developed over the last century and has had a significant and lasting impact on mathematical fields from number theory to representation theory. An introduction to partition theory can be found in Andrew’s influential book “The Theory of Partitions” [2]. On the other hand, although compositions made their debut in the 1915 book “Combinatory Analysis” by MacMahon [1], the study of compositions as a theory in its own right is much younger, many of the most significant results having come in the last twenty years. As a results of this prolonged period of adolescence, quite a few questions about compositions remain unanswered or only partially resolved. Many results have not yet been developed into their fullest mathematical generalizations or connected to applications in other disciplines. Yet it is widely appreciated that compositions, like partitions, are natural combinatorial structures that arise often in other areas of study. In [3], compositions are used in the construction of inverse Born series operators. In [4], results on the schedule checking problem are improved through the use of compositions. It seems an easy conclusion that a sustained effort towards the development of composition theory will be beneficial not only to those who enjoy combinatorial mathematica but to the broader mathematical community as well.
Problems that are straightforward for classical compositions become complicatwed when restrictions are imposed on the parts. In recent years, there has been considerable interest in compositions with restrictions on the size of parts [5-8]. For example, an 1-2 compositions of ν is a composition have only part of size 1 or 2. Hoggatt [9] gave generating function of the number of the 1-2 compositions is
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 is (n+1)st Fibonacci number. Recently there has been interest in n-color compositions defined as compositions of ν for which a part of size n can take n color [ 10-14]. As a brief example, there are 21 color compositions of 4. viz., 
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A palindromic composition [5,9] also referred to as a self–inverse composition [ 15,16], which is a composition whose part sequence is the same whether it is read from left to right or right to left. For example, there are 4 palindromic compositions of 4. viz., 
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And there are 9 n-color palindromic compositions of 4. Viz.,
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In 2012, Shapcott [17] studied C-color compositions which are generation of n-color compositions.

In this paper, we will study n-color 1-2 compositions, n-color 1-2 palindromic compositions. And we shall give some properties of these compositions. We first give the following definitions.

Definition 1.1  An n-color 1-2 composition is an n-color composition have only parts of size 1 or 2.

For example, there are 11 n-color 1-2 compositions of 4. viz.,
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Definition 1.2  An n-color 1-2 composition whose parts read from left to right are identical with when read from right to left is called an n-color 1-2 palindromic composition.
For example, there are five n-color 1-2 palindromic compositions of 4.viz.,
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In section2 we will give the generating function, recurrence formulas and explicit formulas of n-color 1-2 compositions of positive integer.
1 n-color 1-2 compositions
We denote the number of n-color 1-2 compositions of 
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Theorem 2.1  Let 
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Proof  Similar to the proof of Agarwal [10], we have
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We get (2).

On equating the coefficients of 
[image: image49.wmf]q

n

in (1), we have

      
[image: image50.wmf]12

(,)2

m

m

Cm

m

n

n

n

-

-

æö

=

ç÷

-

èø

.

Obviously, 
[image: image51.wmf]m

n

£

, so (4) is also proven.

From the generating function of 
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Theorem 2.2 Let 
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We first give the combinatorial proof of this theorem.

Proof. (Combinatorial)  We split the n-color 1-2 compositions of 
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 into three classes:

(a) Compositions with 
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(b) Compositions with 
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(c) Compositions with 
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We transform the n-color 1-2 compositions in class (a) by deleting 
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Similarly, we can produce n-color 1-2 compositions of 
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We also give another proof of this theorem.

Proof. From Theorem 2.1 we have 
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2 n-color 1-2 palindromic compositions
We denoted the number of 1-2 palindromic compositions of 
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 . This is the generating function for interleaved Fibonacci sequence 
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From the generating function of the number of 1-2 palindromic compositions we get easily the recurrence relation of 
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Theorem 3.1 Let 
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Proof. We split the 1-2 palindromic compositions of 
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 into two classes:

(A) Compositions with 1 on both extremes;

(B) Compositions with 2 on both extremes.

We transform the 1-2 palindromic compositions in class (A) by deleting 1 on both extremes of compositions. This produces the 1-2 palindromic compositions of 
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Hence, we have 
[image: image107.wmf]121212

()(2)(4)

PPP

nnn

---

=-+-

.

Next, we consider the n-color 1-2 palindromic compositions of 
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Theorem 3.2 Let 
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Proof. Obviously, there are two cases for an even number 
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When the number of parts is odd and the central part of size 2 in n-color 1-2 palindromic compositions of 
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When the number of parts is even in n-color 1-2 palindromic compositions of 
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Because of an odd number 
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 have n-color 1-2 palindromic compositions only when the number of parts is odd and the central part of size 1. An n-color 1-2 palindromic composition of odd number 
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From Theorem 2.2 and Theorem 2.3 we get the following corollary easily.

Corollary 3.1 Let 
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From (4) in Theorem 2.1 we also have the explicit formulas of n-color 1-2 palindromic compositions easily.

Corollary 3.2 Let 
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Now we give the recurrence relation of 
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Theorem 3.3 Let 
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Proof. We split the n-color 1-2 palindromic compositions of 
[image: image155.wmf]n

 into three classes:

(a) Compositions with part of size 
[image: image156.wmf]1

1

 on both extremes;

(b) Compositions with part of size 
[image: image157.wmf]1

2

 on both extremes;

(c) Compositions with part of size 
[image: image158.wmf]2

2

 on both extremes.

We transform the n-color 1-2 palindromic compositions in class (a) by deleting 
[image: image159.wmf]1

1

 on both extremes of compositions. These produce n-color 1-2 palindromic compositions of
[image: image160.wmf]2

n

-

. Conversely, for any n-color 1-2 palindromic composition of 
[image: image161.wmf]2

n

-

, we add 
[image: image162.wmf]1

1

 to both extremes of composition to produce the compositions in class (a). In this way, we get that there are exactly 
[image: image163.wmf]12

(2)

S

n

-

-

 elements in class (a).
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Next, we give the generating function for 
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Proof. From Theorem 3.3 we have
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正整数的 n-color 1-2 有序分拆
郭育红
（河西学院数学与统计学院）
摘要：正整数的n-color 1-2 有序分拆是指正整数的只含有分部量是1或者2的n-color有序分拆，而正整数的回文的n-color 1-2有序分拆是指只含有分部量是1或者2的n-color有序分拆且分部量从前往后读与从后往前读是相等的。文章给出了正整数的n-color 1-2 有序分拆数和回文的n-color 1-2 有序分拆数的生成函数，显式公式以及递推公式。而且还给出了正整数的n-color 1-2 有序分拆数和回文的n-color 1-2 有序分拆数之间的一个关系式。
关键词：正整数的有序分拆；n-color 1-2 有序分拆；回文的n-color 1-2有序分拆 ；生成函数；显式公式；递推公式。
中图分类号：O157
Foundations: Supported by the Foundation of Education Department of Gansu province(NO.1210-04)
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