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Abstract: The face super-resolution method is used for generating high-resolution images
from low-resolution ones for better visualization. The Super-Resolution Generative
Adversarial Network (SRGAN) can generate a single super-resolution image with realistic
textures, which is a groundbreaking work. Based on SRGAN, we propose improved face
super-resolution generative adversarial networks. The super-resolution image details

generated by SRGAN usually have undesirable artifacts. To further improve visual quality, we
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delve into the key components of the SRGAN network architecture and improve each part to
achieve a more powerful SRGAN. First, the SRGAN employs residual blocks as the core of
the very deep generator network G. In this paper, we decide to employ Dense Convolutional
Network blocks (Dense blocks), which connect each layer to every other layer in a
feed-forward fashion as our very deep generator networks. Moreover, in the past few years,
generative adversarial networks (GANs) have been applied to solve various problems. Despite
its superior performance, however, it is difficult to train. A simple and effective regularization
method called spectral normalization GAN (SNGAN) is used to solve this problem. We have
experimentally confirmed that our proposed method is superior to the other existing method
in training stability and visual improvements.

Key words: Face super-resolution, GAN, spectral normalization, dense blocks.

0 Introduction

Face Super-Resolution (SR), also known as face hallucination, aims to generate a High-
Resolution (HR) face image from a Low-Resolution (LR) input. Since Dong et al.l!! proposed
SRCNN, various deep convolutional neural network methods have been proposed to improve
SR performance, especially to improve peak signal-to-noise ratio (PSNR) values. However,
a higher PSNR value does not mean that the visual quality is better. They tend to output
excessively smooth results while ignoring high frequency details. We are more eager to get
higher quality images rather than images with higher PSNR values. SRGAN[ is one of the
milestones in the pursuit of visually pleasing results. However, there is still a significant gap
between the SRGAN results and the real image. In this paper, we study the key components
of SRGAN and improve the model from three aspects.

First, the discriminator is improved by using spectral normalization GAN (SNGAN) [,
GAN has recently attracted great interest and has gradually improved the framework and it-
s many applications. However, during training, the discriminator is usually unstable. Inl,
Arjovsky et al. propose a method called Wasserstein-GAN (WGAN). And then Gulrajani et
al.l’! propose an improved WGAN model with gradient penalty to improve the stability and
performance of WGAN. Miyato et al.l¥ provide a simpler normalization method — spectral
normalization as a stabilizer of training of GANs. Inspired by this, spectral normalization is
employed on our discriminator network, which is effective and has small additional computa-
tional cost.

Second, the dense blocks which have higher capacity and are easier to train are introduced
to improve the network structure. We remove the Batch Normalization (BN)6) layers as in[7.
In recent years, as convolution neural networks (CNNs) have become increasingly deeper, the

problem of vanishing-gradient has also emerged. In addition, in the previous works!»8, only the
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high-level features are used to reconstruct HR images. The low-level potential features which
can provide additional information are ignored. Using a skip connection to create a short
path from the top to the bottom is a good way to solve this problem. This helps to convey
information and gradients over the network, making it easy to train. A new structure called
dense convolutional network (DenseNet)[® is proposed, in which any layer of each block is the
output of all the previous layers, as well as the input of all subsequent layers. In SRGAN[I,
the authors choose to use the residual block as the core of the very deep generator network
G. In this paper, we employ the more advanced dense blocks without BN layers as our core of
the generator network. The benefit of using it is expected to be better quality reconstructed
images.

We summarize our contribution as follows:

(I) To the best of our knowledge, we systematically studied the application of the newly
proposed spectral normalization GAN on the single face image super-resolution problem for
the first time.

(IT) We demonstrate that the generator network with the dense blocks without BN layers
as basic blocks can achieve good reconstruction performance and that the reconstruction per-
formance of the generator network can be further improved by the fusion of features at different
levels through dense skip connections.

This paper is organized as follows. The related works are described in Section II. Our
proposed method is presented in Section III. The loss functions are explained in Section IV.
Our experiments and results are described in Section V. Finally, our conclusions are put forth

in Section VI.

1 Related works

This section reviews related works in image and face super-resolution, and generative

adversarial networks.

1.1 Image super-resolution

There are many single image super resolution (SISR) methods already in existence. Among
them, the interpolation method is the simplest and the most widely used method. Timofte et
al.['% and Yang et al.!™] introduce the sparse-based techniques to enhance linear models with
rich image priors.

Recently, many image super-resolution methods based on deep neural networks have been
proposed [L81217 The first application of convolutional neural networks to image super-
resolution problems is the SRCNNM proposed by Dong et al. Later, Shi et al.l'? propose

an efficient subpixel convolutional neural network (ESPCN). Dong et al.l®l develop an accel-
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erated superresolution convolutional neural network. Kim et al.['*¥ propose a very deep CNN
using the residual network to solve the super-resolution problem (VDSR). Lai et al. (14 propose
the Laplacian pyramid super-resolution Network (LapSRN) to solve the speed and accuracy
of the SR problem by taking the original LR image as input and gradually reconstructing the
sub-band residuals of the HR images. Tai et al.!' present the Deep Recursive Residual Net-
work (DRRN) to address the problems of model parameters and accuracy. Moreover, Ledig
et al.[?l propose the Super-Resolution Generative Adversarial Network (SRGAN) for photo-
realistic image SR using a perceptual loss function that consists of an adversarial loss and a

content loss.

1.2 Face super-resolution

Baker et al.['® develop a face hallucination method using Bayesian formulation. Liu et
al." present a two-step approach to hallucinate faces. Wang et al.*”! propose a face hallu-
cination method by Eigen transformation. Yang et al.l?!l present a face hallucination method
by exploiting the local structure. Jin et al.[??l propose a robust multi-image based blind face
hallucination. Huang et al.[?®! present a multi-scale face super resolution method based on the
wavelet-based CNN.

1.3 GANs

Although GAN has great potential and popularity, its performance is still affected by sev-
eral problems. Arjovsky et al.[?*] propose replacing the original loss function with a new loss
function based on the Wasserstein distance. Gulrajani et al.[! propose an improved WGAN
model that uses gradient penalty instead of weight clipping. To further stabilize the training of
discriminator, a more advanced weight normalization technique called spectral normalization
is proposed by Miyato et al.[3l. It has been shown that spectral normalization can improve the
sheer quality of the generated images better than weight normalization ?*! and gradient penal-
ty . In this work, we improve SRGAN by employing a more effective spectral normalization

GAN.

2 Proposed Method

Our main aim is to produce the more realistic super-resolved images. In this section, we
describe the proposed model architecture. It consists of two parts: the first part is a generator
network used to super-resolve the LR images (I“f). The second part is a discriminator used

to distinguish between the super-resolved (I°%) and the original HR images (I*7f).
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2.1 Network Structure

For the generator network, in order to improve the recovered image quality of SRGAN,
inspired by ®!, unlike the residual blocks used in the original SRGAN, dense blocks without the
BN layers are used in our paper. In the discriminator network, the spectral normalization is
used to stabilize the training of the discriminator. We will provide the intuition and motivation

behind our design choices. Their differences will be detailed below.

2.1.1 Generator

In the experiment, we observe that when the network is deeper and trained under the GAN
framework, the BN layer may introduce the undesired artifacts. These artifacts occasionally
occur in iterations and different settings, resulting in an unstable training. Therefore, in order
to ensure the stability and consistency of the training, we remove the BN layers in generator
network.

The generator architecture of?! uses 16 residual blocks with identical layout. The structure
of the residual blocks is shown in Fig. 1(a). We propose to use dense blocks. Our motivation
behind this change is as follows: since the main purpose of this network is to generate super-
resolution images, using the normal residual blocks is inadequate for the generation of details.

The SR-ResNet of? combines 16 residual blocks into a large block, with a skip connection
that links the first and the last block, in an attempt to improve the gradient flow. It may
not fully explore the advantages of the skip connections. We argue that the resolution is to
use a new network - DenseNet. In the structure of DenseNet, a short path is created between
the layer and each of the other layers. This strengthens the flow of information through deep
networks. In addition, because DenseNet can significantly reduce the number of parameters
through feature reuse, it requires less memory and computation for high performance. Here,
the dense blocks are used as the basic building blocks in our generator network. The structure
of each dense block can be seen in Fig. 1(b). Specifically, in our paper, we use each dense block
with 16 convolutional layers. If each convolution layer produces k feature maps as output, the
total number of feature maps generated by one dense block is k x 16, where k is called growth
rate. The growth rate k adjusts how much new information per layer contributes to the final
reconstruction. In order to prevent the network from being too wide, we only use one dense
block and set the growth rate k in this paper to 12.

In the proposed generator network as shown in Fig. 2 (a), all of the feature maps generated
by the network are used as inputs to subsequent sub-pixel layers. If a large number of feature
maps are fed directly into the sub-pixel layers, the computational cost and model size are
significantly increased. Therefore, a convolutional layer with a 1x1 kernel is used as a bottleneck
layer in this paper to reduce the number of input feature maps. It has been proved in previous

s 26

studies 9! that this method can effectively reduce the number of input feature maps and improve
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computational efficiency. We input the feature maps which obtained after using the bottleneck
layer into the sub-pixel layers. We still use two trained sub-pixel convolutional layers™ to

increase the resolution of the input images, as done in SRGAN.

Skip connection

(a) The structure of the residual block. (b) The structure of the dense block.

1: The structure of the residual blocks and the dense blocks.

2.1.2 Discriminator

In addition to the improved generator structure, we have also enhanced the discriminator
based on spectral normalization GAN. We train the discriminator network to distinguish the
generated SR image from the original HR image. The architecture is shown in Fig. 2 (b). We
generally follow the architecture proposed by SRGAN. It contains eight convolutional layers,
each with a filter kernel of 3 x 3. The number of filter kernels increases from 64 to 512 by a
rate of 2 times. Finally, in order to obtain the probability of sample classification, two dense
layers and a sigmoid activation function are set. We use LeakyReLU activation (o = 0.2)
and avoid max-pooling throughout the network. We replace the standard discriminator with
the spectral normalization discriminator, denoted as Dgy.The method we will employ in this
paper, called spectral normalization, is a method that aims to skirt this issue by normalizing the
weight matrices using the technique devised by[3l. The spectral normalization normalizes the
spectral norm of the discriminator weight matrix W so that it satisfies the Lipschitz constraint
o(W)=1:

Wen (W) =W /o (W) (1)

where o (W) is a singular value of matrix W.

3 Loss Function

3.1 Content loss

Pixel-wise loss. Given a low resolution image I and the corresponding high resolution

image I7% | the pixel-wise MSE loss is used to minimize the distance between the high resolution
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2: Architecture of Generator and Discriminator Network

and the super-resolved image. It is defined as follows:

rW rH

2
ISR, = % SN (Hr-c ), ) (2)

z=1 y=1
where W and H denote the size of I*? and r is the upsampling factor (set to 4 in our case).
Perceptual Loss. Although the pixel-based MSE loss achieves a high PSNR value, it
often results in images lacking high frequency content. In order to solve this problem, in!*27),
the perceptual loss is proposed. In our work, perceptual loss is defined on the ReLU active
layer based on the pre-trained 19-layer VGG network described by Simonyan and Zisserman 2%,
We then define the loss as the Euclidean distance between the feature representations of the
reconstructed image and the ground truth:

Wi,j H,‘yj

Lpereey = Wl;H Z Z (¢z‘,j (IHR)w,y —015 (G (IHR))W>2 ®)

JNT =1 y=1
where W; ; and H, ; describe the dimensions of the respective features maps within the VGG
network, i represents the feature mapping obtained by the j-th convolution before the i-th
largest pooling layer in the VGG19 network. We use the layer ReLU54, which gives good

empirical in our experiments.

3.2 Adversarial loss

We choose to experiment with two adversarial losses separately. First is the following

standard objective function:

V(G.D) = Epnnvy, . uny [logD (I"™)] + Eyrneyp, s [log (1-D(G(I"))] 1)

-7
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The generative 1oss lgen, is defined based on the probabilities of the discriminator D over

all the training samples as:
N

lgem = Y _ —logD (G (I"")) (5)

n=1
And then, We also test the performance of the algorithm with the so-called hinge loss
proposed in Spectral Normalization GAN), which is given by:

Vo(G.D) = Bptins, oy [0 (0214 D (1)) 4 Braieng gy [min (0,10 (1))} 0

Ve (G, D) = ~Egunvpgeny [D (G (I"7))] (7)

respectively for the discriminator and the generator.

N

lgen2 = »_ —D (G (I"%)) (8)

n=1

The algorithm based on the hinge loss also shows good performance when evaluated with
PSNR and SSIM.

3.3 Overall training loss

The objective function [“f for training our model is expressed as :
5% = 157 4+ Ngens (9)

where A is the corresponding weights, X is pixel or percep, x = 1 or 2.

4 Experiments

In this section, we introduce our experiments. First, we describe the datasets used in
training and testing. Second, we explain our implementation details. Then, we provide the

results compared with other methods. Finally we present our analysis and discussion.

4.1 Datasets and metrics

Datasets. During experiment, we need the high resolution images datasets and the low
resolution image datasets. The low-resolution images are obtained by 4x downscaling of the
high-resolution image. We conduct extensive experiments on the two datasets: LEW [ and
celebA B We use the aligned and cropped celebA dataset as the training dataset. We only
use all available data and do not need to group the face images into different pose and facial

expression subcategories. Our network never sees the test LR images in the training phase.

- 8-
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Then we randomly select 1000 images of the LEFW dataset as the test set. We coarsely
crop the images according to their face regions and resize them to 128 x 128 without any
pre-alignment operation. We use the MTCNN ! to obtain the cropped image as the input.

Metrics.  All experiments are performed with a scale factor of 4x between low- and
high-resolution images. The peak signal-to-noise ratio (PSNR) and the structural similarity
(SSIM) index were used as the metrics for evaluation. For fair comparison, all reported PSNR

(dB) and SSIM measures are calculated on the y-channel of center-crooped.

4.2 Implementation Details

We train all networks on an NVIDIA GeForce GTX 1060 6GB using celebA database.
For each mini-batch, we crop 16 random 96 x 96 sub images of distinct training images. We
can apply the generator model to images of arbitrary size. The training process is divided
into two parts. First, we train the MSE-based SRDenseNet network for high PSNR values.
The SRDenseNet networks are trained with a learning rate of 10~* and 10® update iterations.
Then, when training the actual GAN, we employ the trained MSE-based SRDenseNet network
as initialization. The loss function in Eq. 9 is used to train the generator with A = 0.003 . All
SNGAN variants are trained with 10° update iterations at a learning rate of 10~* and another
10° iterations at a lower rate of 107°. Pre-training MSE-based SRDenseNet network helps
GAN-based methods achieve more visually satisfying results. The reasons are as follows: I)
for the generator, it can avoid undesired local optima. II) After pre-training, the discriminator
initially receives the good super-resolution images instead of the extremely fake images, which
helps it pay more attention to texture discrimination.

For optimization we use Adam with 8; = 0.9. We alternate updates to the generator
and discriminator network, which is equivalent to k = 1 as used in Goodfellow et al.!*?. Our
generator has two settings - one is similar to SRGAN, which contains 16 residual blocks, and
the other is a model with one dense block. Our discriminator has three settings - one is the
standard GAN discriminator, another is the discriminator of Wasserstein GAN, and the last
one is the discriminator of SNGAN.

The spectral norm o (w) that we use to regularize each layer of the discriminator is the
largest singular value of W. We estimate o (w) by using the power iteration method 3334, In
the experiment we find that one round of power iteration is adequate to achieve satisfactory
performance. In comparison to the full computational cost of the standard GANs, this method

is very computationally cheap.
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4.3 Results

We compare our approach with two other types of approaches: (I) general super-resolution
(SR) method; and (II) the face super-resolution method. For SR method, Kim et al.[*3] propose
a method called VDSR that uses a very deep convolutional network to obtain super-resolution
generic images. Ledig et al.[?l propose a general-purpose super-resolution method that uses
generative adversarial networks and trains with pixel-wise and adversarial losses called SRGAN.
Ma et al.[?% reconstruct HR face images using location patches in the dataset. Chen et al.[3¢l

propose using Wasserstein GANs for face super-resolution.

4.3.1 Qualitative Comparisons with SoA

Bicubic interpolation only upsamples the intensity of the image from neighboring pixels,
rather than generating new content for new pixels. As shown in Fig. 3 (¢), bicubic interpolation
does not produce facial details.

VDSR uses only the pixel loss of Iy in training. As shown in Fig. 3 (d), VDSR cannot
generate real facial details, and super-resolution faces are still blurred.

SRGAN is able to take advantage of the adversarial loss to enhance the details. However,
SRGAN does not make full use of the effective information and is difficult to train. And
sometimes, SRGAN can produce artifacts such as adding wrinkles to the face, as shown in Fig.
3 (e).

Ma et al’s approach!®” avoids ghosting artifacts caused by global models such as PCA
because they employ a method of local constraints learned from positioned sample patches.
However, it requires precise alignment of the exemplar patches. As shown in Fig. 3 (f), the
results of this method have obvious blur artifacts due to the unaligned location patches in the
datasets we are using.

Chen et al’s method ®! for improvement is only about the stability and easiness training,
not the quality of super-resolution facial images, as shown in Fig. 3 (g).

Our model is capable of making full use of the effective information of each layer of neural
networks and removing the undesired artifacts, as shown in Fig. 3 (g).

For a fair comparison, we use the released codes of the above model and use the same

dataset CelebA for training.

4.3.2 Quantitative Comparisons with SoA

We also assess the performance of all methods quantitatively by comparing the average
PSNR and the structural similarity (SSIM) scores on the entire test dataset. TABLE I indicates
that our method achieves better performance compared to other methods. Our method achieves

facial details consistent with real faces because it attains the best PSNR and SSIM results.

- 10 -
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Kl 3: Comparisons with the state-of-art methods. (a) Original HR images. (b) LR inputs.
(¢) Bicubic interpolation. (d) Kim et al’s method™! (VDSR). (e) Ledig et al’s method?
(SRGAN). (f) Ma et al’s method . (g) Chen et al.” s method[®®. (h) Our method

#* 1: Quantitative comparisons on the entire test dataset

Methods Bicubic VDSRM®3  SRGANE  Mal3l  Chen(30 Ours
PSNR 28.25 28.10 27.79 28.14 27.93 29.03
SSIM 0.80 0.79 0.76 0.78 0.76 0.84

4.4 Analysis and Discussion

We investigate the effects of four important components in our framework:

Effects of removing BN layers. In order to explore the impact of the BN layers,
we conduct several experiments. All BN layers are before the upsampling layer. As shown in
Fig. 4, we demonstrate that visual results without BN layers can achieve stable and consis-
tent performance without artifacts. It saves computing resources and memory usage without
compromising performance.

Effects of the SNGAN. In our framework, we use a novel weight normalization method
called spectral normalization. It can stabilize the training of discriminator networks and is sim-
ple to implement. As shown in Fig. 5, we explore the results with different weight normalization
methods.

Effects of the dense blocks. The dense blocks are the core of our framework. In
the comparison experiment, the other components are identical except for dense blocks. As
indicated in Fig. 6, the restored texture can be further improved using the proposed dense
blocks.

11 -
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Kl 5: Ablation study of GAN. (a) Original HR images. (b) standard GAN. (c) Wasserstein
GAN. (d) SNGAN

K] 6: Ablation study of Dense block. (a) Original HR images. (b)Residual block. (c) Dense
block

5 Conclusion

We have presented an effective method to super-resolve the LR face images by exploiting
a generative adversarial network. First, we propose to use more advanced dense blocks without
BN layers instead of residual blocks. Dense blocks can get more and more effective information
through dense connections. We then further introduce the use of spectral normalization GAN
as a stabilizer of training of GANs. When we apply spectral normalization to the GANs on
face super-resolution tasks, it can achieve better results relative to previous works. Moreover,

we add the hinge loss in our experiment, which can recover more detailed texture s.

-12-
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