您当前所在位置: 首页 > 学者

胡清华

  • 18浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 0下载

  • 0评论

  • 引用

期刊论文

Efficient Background Modeling Based on Sparse Representation and Outlier Iterative Removal

暂无

IEEE Transactions on Circuits and Systems for Video Technology,2014,26(2):278 - 289 | 2014年12月12日 | 10.1109/TCSVT.2014.2380195

URL:https://ieeexplore.ieee.org/document/6983582

摘要/描述

Background modeling is a critical component for various vision-based applications. Most traditional methods tend to be inefficient when solving large-scale problems. In this paper, we introduce sparse representation into the task of large-scale stable-background modeling, and reduce the video size by exploring its discriminative frames. A cyclic iteration process is then proposed to extract the background from the discriminative frame set. The two parts combine to form our sparse outlier iterative removal (SOIR) algorithm. The algorithm operates in tensor space to obey the natural data structure of videos. Experimental results show that a few discriminative frames determine the performance of the background extraction. Furthermore, SOIR can achieve high accuracy and high speed simultaneously when dealing with real video sequences. Thus, SOIR has an advantage in solving large-scale tasks.

关键词:

【免责声明】以下全部内容由[胡清华]上传于[2020年11月11日 16时12分13秒],版权归原创者所有。本文仅代表作者本人观点,与本网站无关。本网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

我要评论

全部评论 0

本学者其他成果

    同领域成果