您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者40条结果 成果回收站

上传时间

2020年04月21日

【期刊论文】The gene expression profile of resistant and susceptible Bombyx mori strains reveals cypovirus-associated variations in host gene transcript levels

Rui Guo, Simei Wang, Renyu Xue, Guangli Cao, Xiaolong Hu, Moli Huang, Yangqi Zhang, Yahong Lu, Liyuan Zhu, Fei Chen, Zi Liang, Sulan Kuang, Chengliang Gong

Applied Microbiology and Biotechnology,2015,99(12):5175-5187

2015年06月08日

摘要

High-throughput paired-end RNA sequencing (RNA-Seq) was performed to investigate the gene expression profile of a susceptible Bombyx mori strain, Lan5, and a resistant B. mori strain, Ou17, which were both orally infected with B. mori cypovirus (BmCPV) in the midgut. There were 330 and 218 up-regulated genes, while there were 147 and 260 down-regulated genes in the Lan5 and Ou17 strains, respectively. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment for differentially expressed genes (DEGs) were carried out. Moreover, gene interaction network (STRING) analyses were performed to analyze the relationships among the shared DEGs. Some of these genes were related and formed a large network, in which the genes for B. mori cuticular protein RR-2 motif 123 (BmCPR123) and the gene for B. mori DNA replication licensing factor Mcm2-like (BmMCM2) were key genes among the common up-regulated DEGs, whereas the gene for B. mori heat shock protein 20.1 (Bmhsp20.1) was the central gene among the shared down-regulated DEGs between Lan5 vs Lan5-CPV and Ou17 vs Ou17-CPV. These findings established a comprehensive database of genes that are differentially expressed in response to BmCPV infection between silkworm strains that differed in resistance to BmCPV and implied that these DEGs might be involved in B. mori immune responses against BmCPV infection.

Bombyx mori, Cypovirus, RNA-Seq, Gene expression profile

上传时间

2020年04月21日

【期刊论文】Exogenous gene can be integrated into Nosema bombycis genome by mediating with a non-transposon vector

Rui Guo, Guangli Cao, Yahong Lu, Renyu Xue, Dhiraj Kumar, Xiaolong Hu, Chengliang Gong

Parasitology Research,2016,115(8):3093-3098

2016年08月08日

摘要

Nosema bombycis, a microsporidium, is a pathogen of pebrine disease of silkworms, and its genomic DNA sequences had been determined. Thus far, the research of gene functions of microsporidium including N. bombycis cannot be performed with gain/loss of function. In the present study, we targeted to construct transgenic N. bombycis. Therefore, hemocytes of the infected silkworm were transfected with a nontransposon vector pIZT/V5-His vector in vivo, and the blood, in which the hemocyte with green fluorescence could be observed, was added to the cultured BmN cells. Furthermore, normal BmN cells were infected with germinated N. bombycis, and the infected cells were transfected with pIZT/V5-His. Continuous fluorescence observations exposed that there were N. bombycis with green fluorescence in some N. bombycis-infected cells, and the extracted genome from the purified N. bombycis spore was used as templates. PCR amplification was carried out with a pair of primers for specifically amplifying the green fluorescence protein (GFP) gene; a specific product representing the gfp gene could be amplified. Expression of the GFP protein through Western blotting also demonstrated that the gfp gene was perfectly inserted into the genome of N. bombysis. These results illustrated that exogenous gene can be integrated into N. bombycis genome by mediating with a non-transposon vector. Our research not only offers a strategy for research on gene function of N. bombycis but also provides an important reference for constructing genetically modified microsporidium utilized for biocontrol of pests.

Transgenic Nosema bombycis, Bombyx mori, pIZT/, V5-His vector, BmN cells, Transfection, Fluorescence

上传时间

2020年04月21日

【期刊论文】Novel Infection System of Recombinant BmBDV DNA into BmN Cells of Silkworm, Bombyx mori

Rui Guo, Guangli Cao, Yuexiong Zhu, Dhiraj Kumar, Renyu Xue, Yahong Lu, Xiaolong Hu, Chengliang Gong

Current Microbiology,2016,73(4):587-594

2016年10月08日

摘要

Bombyx mori bidensovirus (BmBDV) was previously termed as Bombyx mori densovirus type 2 and later it was reclassified in the new genus bidensovirus of the new family Bidnaviridae. The genome of BmBDV Zhenjiang isolate (BmBDV-Z) consists of two non-homologous singlestranded linear DNA molecules VD1 and VD2 which are encapsidated into separate virion. To investigate the infectivity of BmBDV DNA, recombinant plasmids pGEM-VD1 inserted with VD1 genome were transfected into the BmN cells of silkworm. Structural proteins of BmBDV were detected with Western blot and immunofluorescence assay, which indicates pGEM-VD1 replicated in the transfected BmN cells and viral proteins were also expressed. Through TEM observation, we identified about 20 nm BmBDV-like viral particles, which confirmed that BmBDV can be generated after transfection. Subsequently, a recombinant baculovirus BmBac-VD1 inserted with VD1 genome was constructed. Results of Western blot and immunofluorescence assay indicated that viral structural proteins of BmBDV were expressed in the BmBac-VD1-infected cells. Baculiform and spherical virions were also observed in infected cells by TEM, and two kinds of virions were separated. However, results of molecular biological detection revealed that infectious sequence from BmBac-VD1 was packaged within spherical virion. Therefore, we suggested that vector inserted with BmBDV genomic DNA showed infectivity, and BmBDV-like viral particles packaging recombinant DNA can be produced in the cultured BmN cells. Outcome of our current research provided not only a new method of infection to explore the gene function of BmBDV in vitro but also a protocol to facilitate development of more effective new-type pesticides.

Infection system, Recombinant virus, BmBDV, Bombyx mori

上传时间

2020年04月21日

【期刊论文】Identification, gene expression and immune function of the novel Bm-STAT gene in virus-infected Bombyx mori

Xiaoli Zhang, Rui Guo, Dhiraj Kumar, Huanyan Ma, Jiabin Liu, Xiaolong Hu, Guangli Cao, Renyu Xue, Chengliang Gong

Gene,2016,577(1):82-88

2016年02月10日

摘要

Genes in the signal transducer and activator of transcription (STAT) family are vital for activities including gene expression and immune response. To investigate the functions of the silkworm Bombyx mori STAT (Bm-STAT) gene in antiviral immunity, two Bm-STAT gene isoforms, Bm-STAT-L for long form and Bm-STAT-S for short form, were cloned. Sequencing showed that the open reading frames were 2313 bp encoding 770 amino acid residues for Bm-STAT-L and 2202 bp encoding 734 amino acid residues for Bm-STAT-S. The C-terminal 42 amino acid residues of Bm-STAT-L were different from the last 7 amino acid residues of Bm-STAT-S. Immunofluorescence showed that Bm-STAT was primarily distributed in the nucleus. Transcription levels of Bm-STAT in different tissues were determined by quantitative PCR, and the results revealed Bm-STAT was mainly expressed in testes. Western blots showed two bands with molecular weights of 70 kDa and 130 kDa in testes, but no bands were detected in ovaries by using anti-Bm-STAT antibody as the primary antibody. Expression of Bm-STAT in hemolymph at 48 h post infection with B. mori macula-like virus (BmMLV) was slightly enhanced compared with controls, suggesting a weak response induced by infection with BmMLV. Hemocyte immunofluorescence showed that Bm-STAT expression was elevated in B. mori nucleopolyhedrovirus (BmNPV)-infected cells. Moreover, resistance of BmN cells to BmNPV was reduced by downregulation of Bm-STAT expression and increased by upregulation. Resistance of BmN cells to BmCPV was not significantly improved by upregulating Bm-STAT expression. Therefore, we concluded that Bm-STAT is a newly identified insect gene of the STAT family. The JAK-STAT pathway has a more specialized role in antiviral defense in silkworms, but JAK-STAT pathway is not triggered in response to all viruses.

Bombyx mori, Bm-STAT gene, Expression pattern, Antiviral defense

上传时间

2020年04月21日

【期刊论文】Identification of long non-coding RNAs in the chalkbrood disease pathogen Ascospheara apis

Rui Guo, Dafu Chen, Cuiling Xiong, Chunsheng Hou, Yanzhen Zheng, Zhongmin Fu, Qingyun Diao, Lu Zhang, Hongquan Wang, Zhixian Hou, Wendong Li, Dhiraj Kumar, Qin Liang

Journal of Invertebrate Pathology,2018,156(1):1-5

2018年06月09日

摘要

Ascospheara apis is a widespread fungal pathogen that exclusively invades honeybee larvae. Thus far, non-coding RNA in A. apis has not yet been documented. In this study, we sequenced A. apis using strand specific cDNA library construction and Illumina RNA sequencing methods, and identified 379 lncRNAs, including antisense lncRNAs, lincRNAs, intronic lncRNAs and sense lncRNAs. Additionally, these lncRNAs were found to be shorter in length and have fewer exons and transcript isoforms than protein-coding genes, similar to those identified in mammals and plants. Furthermore, the existence of 15 predicted lncRNAs of A. apis was confirmed using RT-PCR and expression levels of 11 were lower than those of adjacent protein-coding genes. Our findings not only enlarge the lncRNA database for fungi, but also lay a foundation for further investigation of potential lncRNAmediated regulation of genes in A. apis.

Long non-coding RNA, Chalkbrood, Ascospheara apis, Honeybee larvae

合作学者

  • Rui Guo 邀请

    Soochow University, Fujian Agriculture and Forestry University

    尚未开通主页