您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者6条结果 成果回收站

上传时间

2009年01月06日

【期刊论文】Structural and Functional Analysis of Interhelical Interactions in the Human Immunodeficiency Virus Type 1 gp41 Envelope Glycoprotein by Alanine-Scanning Mutagenesis

汪世龙, MIN LU, *, MARISA O. STOLLER, , SHILONG WANG, JIE LIU, MELINDA B. FAGAN, † AND JACK H. NUNBERG*

JOURNAL OF VIROLOGY, Nov. 2001, p. 11146-11156,-0001,():

-1年11月30日

摘要

Membrane fusion by human immunodeficiency virus type 1 (HIV-1) is promoted by the refolding of the viral envelope glycoprotein into a fusion-active conformation. The structure of the gp41 ectodomain core in its fusion-active state is a trimer of hairpins in which three antiparallel carboxyl-terminal helices pack into hydrophobic grooves on the surface of an amino-terminal trimeric coiled coil. In an effort to identify amino acid residues in these grooves that are critical for gp41 activation, we have used alanine-scanning mutagenesis to investigate the importance of individual side chains in determining the biophysical properties of the gp41 core and the membrane fusion activity of the gp120-gp41 complex. Alanine substitutions at Leu-556, Leu-565, Val-570, Gly-572, and Arg-579 positions severely impaired membrane fusion activity in envelope glycoproteins that were for the most part normally expressed. Whereas alanine mutations at Leu-565 and Val-570 destabilized the trimer-of-hairpins structure, mutations at Gly-572 and Arg-579 led to the formation of a stable gp41 core. Our results suggest that the Leu-565 and Val-570 residues are important determinants of conserved packing interactions between the amino- and carboxyl-terminal helices of gp41. We propose that the high degree of sequence conservation at Gly-572 and Arg-579 may result from selective pressures imposed by prefusogenic conformations of the HIV-1 envelope glycoprotein. Further analysis of the gp41 activation process may elucidate targets for antiviral intervention.

合作学者

  • 汪世龙 邀请

    同济大学,上海

    尚未开通主页