李自珍
长期从事应用数学、数学生态学和生态经济学的教学与科研工作。
个性化签名
 姓名：李自珍
 目前身份：
 担任导师情况：
 学位：

学术头衔：
博士生导师
 职称：

学科领域：
应用数学
 研究兴趣：长期从事应用数学、数学生态学和生态经济学的教学与科研工作。
李自珍，男，河南省许昌市人，汉族；理学博士、兰州大学教授、应用数学博士生导师、生态学博士生导师，生态工程研究所所长。1969年7月，兰州大学数力系毕业，1994年4月晋升教授；1994年10月起获得国务院颁发的政府特殊津贴。长期从事应用数学、数学生态学和生态经济学的教学与科研工作。主要学术兼职有：中国恢复生态学会副理事长；国家教委高等理科第二届教学指导委员会委员；教育部高等学校重点学科生命科学评选专家组成员；甘肃省生态学会副理事长；甘肃省高等数学研究会副理事长；中国科学院沙漠试验研究站学术委员；干旱农业生态国家重点实验室第一届学术委员等。培养博士生、硕士生、博士后共10余届50余人。曾获兰州大学质量优秀奖，主持进行了重点课程和名牌课程教学研究项目“高等数学知识创新工程”，于1999年获得宝钢教学基金奖。自1980年以来长期从事应用数学与生态科学相互交叉的前沿领域中的研究工作，至今主持进行或完成国家级与省部级科研项目20余项，其中包括国家重大项目研究前期专项一项；承担“973”项目专题2项；先后主持完成国家自然科学基金项目4项；国家社科基金项目2项；教育部科技重点项目和面上项目2项；博士基金项目1项；主要参加完成国家“九•五”攻关项目2项等。主要著作有《应用生态学研究》、《人口数学教程》等。在国内外刊物上发表学术论文150余篇，其中SCI收录刊物论文20余篇。曾多次获得国家与省部级奖，包括国家“九•五”攻关优秀成果奖，甘肃省科技进步二等奖，甘肃省社科二等奖与甘肃高校科技进步一等奖等。

主页访问
3713

关注数
0

成果阅读
158

成果数
16
李自珍
，0001，（）：
1年11月30日

8浏览

0点赞

0收藏

0分享

115下载

0评论

引用
【期刊论文】Irrigation and fertilizer effects on water use and yield of spring wheat in semiarid regions
李自珍
，0001，（）：
1年11月30日

4浏览

0点赞

0收藏

0分享

252下载

0评论

引用
李自珍
，0001，（）：
1年11月30日

7浏览

0点赞

0收藏

0分享

118下载

0评论

引用
李自珍
，0001，（）：
1年11月30日

7浏览

0点赞

0收藏

0分享

75下载

0评论

引用

4浏览

0点赞

0收藏

0分享

88下载

0评论

引用

3浏览

0点赞

0收藏

0分享

52下载

0评论

引用
【期刊论文】Distribution patterns of metapopulation determined by Allee effects
李自珍， Z. Li
Popul Ecol (2004) 46: 5563，0001，（）：
1年11月30日
The Allee effect, the social dysfunction and failure to mate successfully when population densityfalls below a certain threshold, is one of the most important phenomena in ecology that can profoundly affect metapopulation persistence. We have developed a continuous dynamic model by pair approximation and two derived spatial lattice models to describe the influences of Allee effects on the distribution and dynamics of metapopulation. Analytical results of pair approximation show that the initial global stable equilibrium of metapopulation size turns into a local stable equilibrium with Allee effects and sensitivity to the initial situations that can incur a threshold phenomenon in dynamics. When the intensity of the Allee effect varies within a certain range, a new positive local stable equilibrium appears. This new equilibrium has the same local intensity as the initial one and a smaller metapopulation size. However, a metapopulation with a too strong Allee effect is doomed. Simulation results from the lattice models reinforce these findings and show that the new equilibrium forms a static distribution border in space. Hence, an Allee effect with moderate intensity can incur three distribution patterns that are sensitive to the initial metapopulation size and the spatial configuration of local populations: aggregation, circumscription and extinction. The pattern of circumscription may be a new explanation for the species' current distributional range. The relationships between distribution patterns (such as random, uniform, aggregation, circumscription and extinction) and other factors (such as meanfield assumption, local interaction, demographic stochasticity and Allee effect) are also discussed.
Pair approximation

13浏览

0点赞

0收藏

0分享

213下载

0评论

引用
李自珍， Li Zizhen， Lin Hong*
Ecological Modelling 107(1998)279287，0001，（）：
1年11月30日
Based on the results of experiments on the regulation of water and fertilizers to spring wheat in farmland of semiarid regions, the paper discusses optimum matching of water and fertilizers from the point of view of farmland ecology and studies the dynamic laws of leaf area, leaf area index and the value of leaf area duration of spring wheat with different amounts of water and fertilizers. It establishes the growth model of spring wheat and a statistical model between the integral of leaf area and the yield, and analyzes quantitatively the relationship between the coefficient of minimum water consumption and the optimum amount of fertilizer. The results are important for utilizing the limited precipitation resources and high efficient yield of spring wheat in semiarid regions.
Spring wheat， Water， Fertilizer， Growth model， Coefficient of water consumption， Yield

24浏览

0点赞

0收藏

0分享

116下载

0评论

引用
李自珍， Cang Hui， Zizhen Li*， Dongxia Yue
Ecological Modelling 177(2004)107118，0001，（）：
1年11月30日
Niche construction means that all organisms modify their environments, also known as ecosystem engineering. Organismenvironmental relations induced by niche construction profoundly influence the dynamics, competition, and diversity of metapopulations. Singlespecies model shows a positive feedback between metapopulation and environmental resources, which leads to threshold phenomena in dynamics. Lattice model suggests that 'ecological imprint' is formed by niche construction in spatial habitat. Ecological imprint leads to the selforganized spatial heterogeneity of environments and species' distribution limits. In competitive systems, niche construction leads to alternative competitive consequences, which implies that tradeoffs between the abilities of competition, colonization, and niche construction are important to competitive coexistence. Ecological imprint in competitive systems can weaken the spatial competitive intensity by spatial heterogeneity and segregation of species' distributions. In metapopulation community, positive niche construction leads to exclusion of intermediate species with oddnumbered species richness and oscillation with evennumbered species richness; negative niche construction has opposite results. These results suggest that species richness may be critical to community's dynamics and structure. Extinction of some species can lead to dramatic change of dynamical stability, oscillations or exclusions, or even chain reactions that damage the community structure.
Niche construction， Metapopulation dynamics， Ecological imprint， Diversity， Distribution limit， Heterogeneity

18浏览

0点赞

0收藏

0分享

184下载

0评论

引用
【期刊论文】Dynamical complexity and metapopulation persistence
李自珍， Cang Hui， Zizhen Li*
Ecological Modelling 164(2003)201209，0001，（）：
1年11月30日
Factors leading to chaotic dynamics in metapopulation are studied, including Allee effect, rescue effect and overcrowding effect. We use theoretical bifurcation diagram and lattice simulation to investigate the dynamics of metapopulation in time and space. The influence of habitat destruction on the complexity of dynamics, which can decrease the fraction of suitable patches and induce the change of colonization rate and extinction rate, is also discussed. The whole scene of the implicit relationship between dynamical complexity and metapopulation persistence is given, which has five primary results. First, metapopulation persistence reaches the maximum at moderate dynamical complexity, which can occur at moderate intensity of habitat destruction. Second, the intensity of habitat destruction can be approximated by the dynamical complexity because the habitat destruction regulates the dynamics. Third, Allee effects can amazingly regulate dynamics and improve the persistence slightly before extinction. Fourth, rescue effects stabilize dynamics and improve persistence. Finally, overcrowding effect is the key to incur chaos and increase the dynamical complexity, and to improve the persistence of metapopulations. Anyway, there is no uniform correlation between dynamical complexity and metapopulation persistence.
Dynamical complexity， Metapopulation persistence， Allee effect， Rescue effect， vercrowding effect， Habitat destruction

7浏览

0点赞

0收藏

0分享

152下载

0评论

引用