您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者10条结果 成果回收站

上传时间

2021年02月04日

【期刊论文】In Situ Passivation for Efficient PbS Quantum Dot Solar Cells by Precursor Engineering

Advanced Materials,2018,30(16):1704871

2018年03月15日

摘要

Current efforts on lead sulfide quantum dot (PbS QD) solar cells are mostly paid to the device architecture engineering and postsynthetic surface modification, while very rare work regarding the optimization of PbS synthesis is reported. Here, PbS QDs are successfully synthesized using PbO and PbAc2 · 3H2O as the lead sources. QD solar cells based on PbAc‐PbS have demonstrated a high power conversion efficiency (PCE) of 10.82% (and independently certificated values of 10.62%), which is significantly higher than the PCE of 9.39% for PbO‐PbS QD based ones. For the first time, systematic investigations are carried out on the effect of lead precursor engineering on the device performance. It is revealed that acetate can act as an efficient capping ligands together with oleic acid, providing better surface coverage and replace some of the harmful hydroxyl (OH) ligands during the synthesis. Then the acetate on the surface can be exchanged by iodide and lead to desired passivation. This work demonstrates that the precursor engineering has great potential in performance improvement. It is also pointed out that the initial synthesis is an often neglected but critical stage and has abundant room for optimization to further improve the quality of the resultant QDs, leading to breakthrough efficiency.

0

上传时间

2021年02月04日

【期刊论文】A Universal Strategy to Utilize Polymeric Semiconductors for Perovskite Solar Cells with Enhanced Efficiency and Longevity

Advanced Functional Materials,2018,28(15):1706377

2018年01月25日

摘要

In this contribution, a facile and universal method is successfully reported to fabricate perovskite solar cells (PSCs) with enhanced efficiency and stability. Through dissolving functional conjugated polymers in antisolvent chlorobenzene to treat the spinning CH3NH3PbI3 perovskite film, the resultant devices exhibit significantly enhanced efficiency and longevity simultaneously. In‐depth characterizations demonstrate that thin polymer layer well covers the top surface of perovskite film, resulting in certain surface passivation and morphology modification. More importantly, it is shown that through rational chemical modification, namely molecular fluorination, the air stability and photostability of the perovskite solar cells are remarkably enhanced. Considering the vast selection of conjugated polymer materials and easy functional design, promising new results are expected in further enhancement of device performance. It is believed that the findings provide exciting insights into the role of conjugated polymer in improving the current perovskite‐based solar cells.

0

上传时间

2021年02月04日

【期刊论文】Improved Tandem All‐Polymer Solar Cells Performance by Using Spectrally Matched Subcells

Advanced Energy Materials,2018,8(14):1703291

2018年01月24日

摘要

All‐polymer solar cells (all‐PSCs) are attractive as alternatives to fabricate thermally and mechanically stable solar cells, especially with recent improvements in their power conversion efficiency (PCE). In this work, efficient all‐PSCs with near‐infrared response (up to 850 nm) are developed using newly designed regioregular polymer donors with relatively narrow optical gap. These all‐PSCs systems achieve PCEs up to 6.0% after incorporating fluorine into the polymer backbone. More importantly, these polymers exhibit absorbance that is complementary to previously reported wide bandgap polymer donors. Thus, the superior properties of the newly designed polymers afford opportunities to fabricate the first spectrally matched all‐polymer tandem solar cells with high performance. A PCE of 8.3% is then demonstrated which is the highest efficiency so far for all‐polymer tandem solar cells. The design of narrow bandgap polymers provides new directions to enhance the PCE of emerging single‐junction and tandem all polymer solar cells.

0

上传时间

2021年02月04日

【期刊论文】Thermally Stable All‐Polymer Solar Cells with High Tolerance on Blend Ratios

Advanced Energy Materials,2018,8(18):1800029

2018年03月12日

摘要

Tuning the blend composition is an essential step to optimize the power conversion efficiency (PCE) of organic bulk heterojunction (BHJ) solar cells. PCEs from devices of unoptimized donor:acceptor (D:A) weight ratio are generally significantly lower than optimized devices. Here, two high‐performance organic nonfullerene BHJ blends PBDB‐T:ITIC and PBDB‐T:N2200 are adopted to investigate the effect of blend ratio on device performance. It is found that the PCEs of polymer‐polymer (PBDB‐T:N2200) blend are more tolerant to composition changes, relative to polymer‐molecule (PBDB‐T:ITIC) devices. In both systems, short‐circuit current density (Jsc) is tracked closely with PCE, indicating that exciton dissociation and transport strongly influence PCEs. With dilute acceptor concentrations, polymer‐polymer blends maintain high electron mobility relative to the polymer‐molecule blends, which explains the dramatic difference in PCEs between them as a function of D:A blend ratio. In addition, polymer‐polymer solar cells, especially at high D:A blend ratio, are stable (less than 5% relative loss) over 70 d under continuous heating at 80 °C in a glovebox without encapsulation. This work demonstrates that all‐polymer solar cells show advantage in operational lifetime under thermal stress and blend‐ratio resilience, which indicates their high potential for designing of stable and scalable solar cells.

0

上传时间

2021年02月04日

【期刊论文】Ligand Mediated Transformation of Cesium Lead Bromide Perovskite Nanocrystals to Lead Depleted Cs4PbBr6 Nanocrystals

J. Am. Chem. Soc.,2017,139(15):5309–5312

2017年03月30日

摘要

Lead halide perovskite nanocrystals (NCs) have emerged as attractive nanomaterials owing to their excellent optical and optoelectronic properties. Their intrinsic instability and soft nature enable a post-synthetic controlled chemical transformation. We studied a ligand mediated transformation of presynthesized CsPbBr3 NCs to a new type of lead–halide depleted perovskite derivative nanocrystal, namely Cs4PbBr6. The transformation is initiated by amine addition, and the use of alkyl-thiol ligands greatly improves the size uniformity and chemical stability of the derived NCs. The thermodynamically driven transformation is governed by a two-step dissolution–recrystallization mechanism, which is monitored optically. Our results not only shed light on a decomposition pathway of CsPbBr3 NCs but also present a method to synthesize uniform colloidal Cs4PbBr6 NCs, which may actually be a common product of perovskite NCs degradation.

0

合作学者

  • 暂无合作作者